Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurre...Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.展开更多
Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experie...Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.展开更多
This study focused on the development of a new low viscosity automatic transmission fluid(ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions.Recent high fuel prices encou...This study focused on the development of a new low viscosity automatic transmission fluid(ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions.Recent high fuel prices encourage increased efficiency in the driveline,including the transmission.Reduction in fluid viscosity and wider use of slip control in torque converter clutches are two ways to practically improve fuel efficiency.Increased torque and more shifting is seen with a variety of new transmission hardware platforms,such as wet starting clutches,dual clutches and seven-or eight-speed ATs.This suggests the need for enhanced levels of friction durability from the ATF.The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear,friction durability and torque capacity requirements at low viscosity in a cost-effective manner.This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style.The new chemistry employs a low viscosity for increased fuel economy,while easily doubling the friction durability of current conventional ATFs and offering higher torque and better EP.展开更多
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis...Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.展开更多
基金Projects 50525825 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of ChinaBK2008002 by the Natural Science Foundation of Jiangsu Province
文摘Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.
文摘Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.
文摘This study focused on the development of a new low viscosity automatic transmission fluid(ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions.Recent high fuel prices encourage increased efficiency in the driveline,including the transmission.Reduction in fluid viscosity and wider use of slip control in torque converter clutches are two ways to practically improve fuel efficiency.Increased torque and more shifting is seen with a variety of new transmission hardware platforms,such as wet starting clutches,dual clutches and seven-or eight-speed ATs.This suggests the need for enhanced levels of friction durability from the ATF.The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear,friction durability and torque capacity requirements at low viscosity in a cost-effective manner.This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style.The new chemistry employs a low viscosity for increased fuel economy,while easily doubling the friction durability of current conventional ATFs and offering higher torque and better EP.
基金The Director,Naval Material Research Laboratory(NMRL),Ambernath for financial support through CARS project No:G8/15250/2011 dated29.02.2012
文摘Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.