Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties o...Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.展开更多
The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especi...The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
Transmission power lines are a common source of extremely low frequency(ELF) magnetic fields which are usually analyzed as serial lines in one direction.Overhead vertical-type double-circuit power lines,which are gene...Transmission power lines are a common source of extremely low frequency(ELF) magnetic fields which are usually analyzed as serial lines in one direction.Overhead vertical-type double-circuit power lines,which are generally used in Japan,sometimes carry different current for each circuit and change direction.In this paper,we focused on both the angle of direction change and the current balance in order to clarify the characteristics of distribution of magnetic fields at a height of 1 m.The magnetic field distributions were analyzed considering both the angle of power lines changing direction and the current balance of each circuit.The total magnetic field under overhead vertical-type double-circuit power lines with same current was generally reduced in comparison with that under a single-circuit power line due to phase difference.The total magnetic fields around the turning point where the change of transmission lines direction increased because each circuit came closer in that area.The component of B_z effect on total magnetic field was greatest around the maximum of total magnetic fields nearby the turning point.展开更多
Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The in...Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The investigation utilizes a molecular dynamics(MD)approach at the atomic level and vibrational dynamics calculations using the GolDNA-Amber force field.Results The results reveal that the sugar-phosphate backbone of the DNA exhibits reduced adherence to the gold surface,while the side chains display a stronger affinity.When subjecting the hydrated DNA strands to an electric field with frequencies up to 10 THz,peak intensities of vibrational dynamic density(VDoS)are observed at five different frequencies.Moreover,the strong electric field causes hydrogen bonds in the DNA within the slit to break.The sensitivity to the electric field is particularly pronounced at 8.8 THz and 9.6 THz,with different vibrational modes observed at varying electric field strengths.Conclusion These findings contribute to an enhanced understanding of the molecular organization of gold-plated charged biological interfaces.展开更多
基金Sponsored by National Nature Science Foundation of China ( 51179195)National Defense Foundation of China ( 513030203-02)
文摘Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.
基金supported by the National Natural Science Foundation of China(1140440611374072)
文摘The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
文摘Transmission power lines are a common source of extremely low frequency(ELF) magnetic fields which are usually analyzed as serial lines in one direction.Overhead vertical-type double-circuit power lines,which are generally used in Japan,sometimes carry different current for each circuit and change direction.In this paper,we focused on both the angle of direction change and the current balance in order to clarify the characteristics of distribution of magnetic fields at a height of 1 m.The magnetic field distributions were analyzed considering both the angle of power lines changing direction and the current balance of each circuit.The total magnetic field under overhead vertical-type double-circuit power lines with same current was generally reduced in comparison with that under a single-circuit power line due to phase difference.The total magnetic fields around the turning point where the change of transmission lines direction increased because each circuit came closer in that area.The component of B_z effect on total magnetic field was greatest around the maximum of total magnetic fields nearby the turning point.
基金supported by a grant from National Defense Science and Technology Innovation Special Zone of China(02-ZT-008).
文摘Objective This work examines the impact of external electric fields at terahertz(THz)frequencies on doublestranded deoxyribonucleic acid(dsDNA)systems adsorbed on Au(111)surfaces in aqueous environments.Methods The investigation utilizes a molecular dynamics(MD)approach at the atomic level and vibrational dynamics calculations using the GolDNA-Amber force field.Results The results reveal that the sugar-phosphate backbone of the DNA exhibits reduced adherence to the gold surface,while the side chains display a stronger affinity.When subjecting the hydrated DNA strands to an electric field with frequencies up to 10 THz,peak intensities of vibrational dynamic density(VDoS)are observed at five different frequencies.Moreover,the strong electric field causes hydrogen bonds in the DNA within the slit to break.The sensitivity to the electric field is particularly pronounced at 8.8 THz and 9.6 THz,with different vibrational modes observed at varying electric field strengths.Conclusion These findings contribute to an enhanced understanding of the molecular organization of gold-plated charged biological interfaces.