期刊文献+
共找到1,712篇文章
< 1 2 86 >
每页显示 20 50 100
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
1
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional neural network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:4
3
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:3
4
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
5
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
6
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
7
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
8
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
9
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
10
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计
11
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
在线阅读 下载PDF
基于LSTM-FC模型的充电站短期运行状态预测
12
作者 毕军 王嘉宁 王永兴 《华南理工大学学报(自然科学版)》 北大核心 2025年第2期58-67,共10页
公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数... 公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数据,提出一种基于长短时记忆(LSTM)网络与全连接(FC)网络结合的充电站内可用充电桩预测模型,有效结合了历史充电状态序列和相关特征。首先,将兰州市某充电站的订单数据转化为可用充电桩数量,并进行数据预处理;其次,提出了基于LSTM-FC的充电站运行状态预测模型;最后,将输入步长、隐藏层神经元数量和输出步长3种参数进行单独测试。为验证LSTM-FC模型的预测效果,将该模型与原始LSTM网络、BP神经网络模型和支持向量回归(SVR)模型进行对比。结果表明:LSTM-FC模型的平均绝对百分比误差分别降低了0.247、1.161和2.204个百分点,具有较高的预测精度。 展开更多
关键词 lstm神经网络 全连接网络 电动汽车 充电站运行状态
在线阅读 下载PDF
考虑风速空间异质性的LSTM-AM雾天能见度预测模型
13
作者 王小建 林智婕 +4 位作者 马飞 苏彤 白元旦 郭庆元 黄凯 《气候与环境研究》 北大核心 2025年第4期439-449,共11页
针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进... 针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进行量化,融合邻近点空间分布及风速差异信息,采用风向夹角和变异值对风速空间异质性特征进行加权,实现对风速空间异质性的有效提取;利用AM机制能加强对关键信息关注的优势对LSTM方法进行改进,以有效捕捉和反映关键时刻气象因子对雾天能见度的影响,增强模型对重要时序信息关注的能力和模型预测的准确性,实现风速空间异质性下对雾天能见度的预测。研究结果表明,本文模型相关系数提升10%~20%,均方根误差下降25%~40%,平均绝对误差下降26.3%~39.1%,具有较高的雾天能见度预测精度。 展开更多
关键词 空间异质性 半变异函数 长短期记忆神经网络 注意力机制 雾天能见度
在线阅读 下载PDF
CNN-DLSTM结合迁移学习的小样本轴承故障诊断方法
14
作者 仇芝 徐泽瑜 +2 位作者 陈涛 石明江 韦明辉 《机械科学与技术》 北大核心 2025年第2期288-297,共10页
针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习... 针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习的故障诊断方法。该诊断方法基于电机振动数据,利用CNN提取故障特征;将特征作为DLSTM的输入,进一步学习、编码从CNN中学习的特征序列信息,捕获高级特征用于故障分类;首先用充足的西储轴承数据对该故障诊断模型进行预训练,再利用迁移学习放松训练数据和测试数据可不必独立同分布的能力,使用自制实验平台的小样本数据微调预训练模型。最后用迁移学习后的模型,对跨工况、跨型号、跨故障的故障轴承数据进行模拟实验。结果表明,所提出的方法与其他方法相比鲁棒性强,训练速度更快,能够更精确的诊断故障,平均诊断精度达到99%以上。 展开更多
关键词 小样本数据集故障诊断 卷积神经网络 长短期记忆网络 迁移学习
在线阅读 下载PDF
基于BiLSTM-AM-ResNet组合模型的山西焦煤价格预测
15
作者 樊园杰 睢祎平 张磊 《中国煤炭》 北大核心 2025年第3期42-51,共10页
煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题... 煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题,以山西焦煤价格为研究对象,分析影响煤炭价格的多种因素,并利用先进的人工智能机器学习算法来解决煤价预测问题。综合双向长短期记忆网络、注意力机制和残差神经网络的优势,构建双向长短期残差神经网络(BiLSTM-AM-ResNet)进行山西焦煤价格预测实验。采集2012-2023年的山西焦煤价格周度数据作为实验数据,对其进行空缺值处理和归一化处理,绘制相关系数热图并确定模型输入特征类型,进而简化模型并提高预测准确率与预测速度。通过模型预测实验得出,经BiLSTM-AM-ResNet模型预测的山西焦煤价格与实际煤价的发展趋势有着较高的线性拟合性,且预测结果与真实煤价在数值上非常接近,预测准确率达到了95.08%。 展开更多
关键词 焦煤价格预测 长短期记忆网络 注意力机制 残差神经网络 相关性分析
在线阅读 下载PDF
基于CNN-BiLSTM-Attention的特高压三端混合直流输电线路故障区域判别研究
16
作者 陈仕龙 宋国雄 +3 位作者 邓健 毕贵红 杨毅 李国辉 《电机与控制学报》 北大核心 2025年第7期132-141,共10页
针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后... 针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后,采集T区左右4个保护装置故障时刻的暂态电流、电压数据得到功率突变量数据,通过卷积神经网络(CNN)提取局部特征,利用双向长短期记忆网络(BiLSTM)学习更为丰富的故障特征,使模型更好地理解和利用所提取的故障特征,并利用注意力机制(AM)对所提取的故障特征信息进行加权,筛选有助于故障区域判别的故障特征从而提高模型性能。最后,通过仿真验证所提方法能够迅速且精确地识别故障区域,既保证了较高的准确度,又具备良好的过渡电阻适应性和抗噪声干扰能力。 展开更多
关键词 三端混合柔性直流 暂态功率 卷积神经网络 双向长短期记忆网络 注意力机制 故障区域判别
在线阅读 下载PDF
考虑空间相关性的MSCNN LSTM Attention能见度预测模型
17
作者 王小建 苏彤 +6 位作者 马飞 林智婕 白元旦 郭庆元 魏俊涛 黄凯 徐玉凤 《安全与环境学报》 北大核心 2025年第4期1622-1632,共11页
准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convoluti... 准确预测能见度对保障交通运输安全具有重要意义。针对现有方法在能见度预测时对影响因素空间相关性考虑不足导致预测精度较低的问题,研究构建了一种考虑空间相关性的能见度预测模型。利用一维多尺度卷积神经网络(Multi-Scale Convolutional Neural Network, MSCNN)提取能见度以预测各影响因素下不同精细度的空间特征,并将其进行线性融合得到多因素空间特征,实现对能见度预测影响因素的空间特征提取;利用Attention机制加强对关键信息关注的优势以对长短期记忆神经网络(Long-Short Term Memory Neural Network, LSTM)方法进行改进,进而增强模型对重要时序信息关注的能力和模型预测的准确性,实现在考虑影响因素空间相关性下对能见度的预测。以2021—2023年西安市逐时气象数据和污染物数据为试验数据,采用均方根误差(RMSE)、平均绝对误差(MAE)和R2指标对模型进行评价。试验结果显示,研究模型MAE下降26.3%~39.1%,RMSE下降25%~40%,R2提升3.7%~16.4%,能见度预测精度较高。 展开更多
关键词 环境科学技术基础学科 能见度预测 空间相关性 一维多尺度卷积神经网络 长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
18
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于MIC-PCA-LSTM模型的垃圾焚烧炉NO_(x)排放浓度预测
19
作者 姚顺春 李龙千 +5 位作者 刘文 李峥辉 周安鹂 李文静 陈姜宏 卢志民 《华南理工大学学报(自然科学版)》 北大核心 2025年第7期1-10,共10页
垃圾焚烧过程选择性催化还原(SCR)脱硝系统出口NO_(x)排放浓度的准确预测对提高数据质量和喷氨控制水平具有重要意义。垃圾焚烧过程存在显著的非线性、多变量耦合和时间序列特性,给NO_(x)排放浓度的精准预测带来了巨大挑战。针对此问题... 垃圾焚烧过程选择性催化还原(SCR)脱硝系统出口NO_(x)排放浓度的准确预测对提高数据质量和喷氨控制水平具有重要意义。垃圾焚烧过程存在显著的非线性、多变量耦合和时间序列特性,给NO_(x)排放浓度的精准预测带来了巨大挑战。针对此问题,该文将最大信息系数(MIC)、主成分分析(PCA)和长短期记忆(LSTM)神经网络相结合,提出了一种SCR脱硝系统出口NO_(x)排放浓度预测模型。首先,采用MIC方法计算各变量间的最大归一化互信息值,选择和NO_(x)排放浓度相关性较大的特征变量,再结合最大冗余原则剔除冗余变量。随后,基于PCA方法获得各主成分方差的累计贡献率,提取主成分特征,得到最优输入特征变量集。最后,利用LSTM神经网络建立SCR出口NO_(x)排放浓度预测模型。结果表明,相比反向传播神经网络模型和支持向量机模型,该文提出的模型具有最优的预测精度和泛化能力,其测试集平均绝对百分比误差为6.33%,均方根误差为4.71 mg/m^(3),决定系数为0.90。研究结果为实现垃圾焚烧过程SCR脱硝系统的喷氨智能控制提供了理论基础。 展开更多
关键词 垃圾焚烧 选择性催化还原 排放浓度预测 最大信息系数 主成分分析 长短期记忆神经网络
在线阅读 下载PDF
基于LSTM-DDPG的再入制导方法
20
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部