Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi...Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.展开更多
云计算的快速发展使得服务器面临的负载压力逐渐增加,如何精准预测负载资源成为云中心资源分配与服务器安全运行的重要课题。现有的单一模型在捕捉全局特征方面存在不足,而组合模型在处理时序数据时的平稳性和解释性方面有所欠缺。因此...云计算的快速发展使得服务器面临的负载压力逐渐增加,如何精准预测负载资源成为云中心资源分配与服务器安全运行的重要课题。现有的单一模型在捕捉全局特征方面存在不足,而组合模型在处理时序数据时的平稳性和解释性方面有所欠缺。因此,提出一种基于NeuralProphet分解的卷积神经网络(CNN)-长短期记忆(LSTM)网络-注意力(Attention)机制的组合模型。NeuralProphet将负载数据分解为趋势、季节和自回归项分量,增强数据的平稳性和解释性,从而使模型能更高效地捕捉全局特征和长期依赖关系;并通过注意力机制动态权重分配,聚焦影响预测结果的关键特征,进一步提高对未来时刻的预测精度。在Alibaba Cluster Data V2018数据集上的实验结果表明,所提出的组合模型在预测精度和性能方面优于其他深度学习模型。与单一模型NeuralProphet及CNN-BiLSTM组合模型相比,该模型在R2评分上提高了17.9%,均方根误差(RMSE)降低了73.6%,平均绝对误差(MAE)降低了69.7%,对称平均绝对百分比误差(sMAPE)降低了65.3%,具备更高的预测准确性和鲁棒性,有助于提高云资源利用效率。展开更多
延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F_(10.7)、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences,CAS)GIM数据为...延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F_(10.7)、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences,CAS)GIM数据为输入参数的NeuralProphet神经网络模型(NP模型),实现在2015年3月特大磁暴期中国区域电离层TEC短期预报.为验证NP模型的预报精度,本文同时构建了长短期记忆神经网络(Long Short-term Memory Neural Network,LSTM)模型进行对比分析.结果统计分析表明,NP模型在磁暴期(2015年DOY076-078)TEC预报值RMSE和RD分别为0.83 TECU和3.13%,绝对和相对精度较LSTM模型分别提高1.49 TECU和10.25%;且NP模型RMSE优于1.5 TECU的比例达97.24%,远高于LSTM模型.NP模型预报值与CAS具有较好一致性和无偏性,偏差均值仅为-0.01 TECU,而LSTM模型预报值的均值偏大,偏差均值为1.49 TECU.从低纬到中纬度的三个纬度带内,NP模型RMSE分别为1.12、0.83和0.44 TECU,精度比LSTM模型提高1.94、1.56和1.23 TECU.整体上,在磁暴期NP模型预报性能明显优于LSTM模型,能够精细描述中国区域电离层TEC时空变化.展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
文摘Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.
文摘云计算的快速发展使得服务器面临的负载压力逐渐增加,如何精准预测负载资源成为云中心资源分配与服务器安全运行的重要课题。现有的单一模型在捕捉全局特征方面存在不足,而组合模型在处理时序数据时的平稳性和解释性方面有所欠缺。因此,提出一种基于NeuralProphet分解的卷积神经网络(CNN)-长短期记忆(LSTM)网络-注意力(Attention)机制的组合模型。NeuralProphet将负载数据分解为趋势、季节和自回归项分量,增强数据的平稳性和解释性,从而使模型能更高效地捕捉全局特征和长期依赖关系;并通过注意力机制动态权重分配,聚焦影响预测结果的关键特征,进一步提高对未来时刻的预测精度。在Alibaba Cluster Data V2018数据集上的实验结果表明,所提出的组合模型在预测精度和性能方面优于其他深度学习模型。与单一模型NeuralProphet及CNN-BiLSTM组合模型相比,该模型在R2评分上提高了17.9%,均方根误差(RMSE)降低了73.6%,平均绝对误差(MAE)降低了69.7%,对称平均绝对百分比误差(sMAPE)降低了65.3%,具备更高的预测准确性和鲁棒性,有助于提高云资源利用效率。
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.