期刊文献+
共找到2,113篇文章
< 1 2 106 >
每页显示 20 50 100
Real-time UAV path planning based on LSTM network 被引量:2
1
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
在线阅读 下载PDF
基于Hyperband-CNN-BiLSTM模型的车辆油耗预测方法
2
作者 吐尔逊·买买提 孙慧 刘亚楼 《科学技术与工程》 北大核心 2025年第9期3896-3904,共9页
为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网... 为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。 展开更多
关键词 Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(Bilstm) 组合模型
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
3
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
4
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
5
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
6
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
7
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计 被引量:1
8
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
9
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于BiLSTM-AM-ResNet组合模型的山西焦煤价格预测 被引量:1
10
作者 樊园杰 睢祎平 张磊 《中国煤炭》 北大核心 2025年第3期42-51,共10页
煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题... 煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题,以山西焦煤价格为研究对象,分析影响煤炭价格的多种因素,并利用先进的人工智能机器学习算法来解决煤价预测问题。综合双向长短期记忆网络、注意力机制和残差神经网络的优势,构建双向长短期残差神经网络(BiLSTM-AM-ResNet)进行山西焦煤价格预测实验。采集2012-2023年的山西焦煤价格周度数据作为实验数据,对其进行空缺值处理和归一化处理,绘制相关系数热图并确定模型输入特征类型,进而简化模型并提高预测准确率与预测速度。通过模型预测实验得出,经BiLSTM-AM-ResNet模型预测的山西焦煤价格与实际煤价的发展趋势有着较高的线性拟合性,且预测结果与真实煤价在数值上非常接近,预测准确率达到了95.08%。 展开更多
关键词 焦煤价格预测 长短期记忆网络 注意力机制 残差神经网络 相关性分析
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
11
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于MIC-PCA-LSTM模型的垃圾焚烧炉NO_(x)排放浓度预测 被引量:1
12
作者 姚顺春 李龙千 +5 位作者 刘文 李峥辉 周安鹂 李文静 陈姜宏 卢志民 《华南理工大学学报(自然科学版)》 北大核心 2025年第7期1-10,共10页
垃圾焚烧过程选择性催化还原(SCR)脱硝系统出口NO_(x)排放浓度的准确预测对提高数据质量和喷氨控制水平具有重要意义。垃圾焚烧过程存在显著的非线性、多变量耦合和时间序列特性,给NO_(x)排放浓度的精准预测带来了巨大挑战。针对此问题... 垃圾焚烧过程选择性催化还原(SCR)脱硝系统出口NO_(x)排放浓度的准确预测对提高数据质量和喷氨控制水平具有重要意义。垃圾焚烧过程存在显著的非线性、多变量耦合和时间序列特性,给NO_(x)排放浓度的精准预测带来了巨大挑战。针对此问题,该文将最大信息系数(MIC)、主成分分析(PCA)和长短期记忆(LSTM)神经网络相结合,提出了一种SCR脱硝系统出口NO_(x)排放浓度预测模型。首先,采用MIC方法计算各变量间的最大归一化互信息值,选择和NO_(x)排放浓度相关性较大的特征变量,再结合最大冗余原则剔除冗余变量。随后,基于PCA方法获得各主成分方差的累计贡献率,提取主成分特征,得到最优输入特征变量集。最后,利用LSTM神经网络建立SCR出口NO_(x)排放浓度预测模型。结果表明,相比反向传播神经网络模型和支持向量机模型,该文提出的模型具有最优的预测精度和泛化能力,其测试集平均绝对百分比误差为6.33%,均方根误差为4.71 mg/m^(3),决定系数为0.90。研究结果为实现垃圾焚烧过程SCR脱硝系统的喷氨智能控制提供了理论基础。 展开更多
关键词 垃圾焚烧 选择性催化还原 排放浓度预测 最大信息系数 主成分分析 长短期记忆神经网络
在线阅读 下载PDF
基于LSTM的舰载靶机适发窗口预报方法研究
13
作者 戴勇 马智勇 +6 位作者 刘海瑞 刘浩 章雨驰 俞梦冉 李鹏 钱征华 李彤韡 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第5期976-983,共8页
为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational ... 为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational mode decomposition,VMD)滤波,消除累积误差引起的预测结果振荡。通过有限元仿真及自主设计的船模实验平台开展波浪水池试验,采集横摇、纵摇、垂荡等关键姿态参数的时序数据。实验设置涵盖1级至5级典型海况条件。实验结果表明,该模型在升沉位移、横摇角及纵摇角预测中,均方误差(Mean squared error,MSE)最大降幅可达99.4%,MAPE降低至2.11%,验证了其工程应用的有效性。研究成果可为舰载靶机发射引导系统提供高精度的船舶运动态势预判,对提升着舰安全性具有重要工程价值。 展开更多
关键词 船舶 长短期记忆网络 姿态预测 靶机发射
在线阅读 下载PDF
基于聚类EEMD-PCA-LSTM与误差补偿的光热电站短期太阳直接法向辐射预测 被引量:1
14
作者 张晓英 常正云 +1 位作者 罗童 张兴平 《电气工程学报》 北大核心 2025年第2期345-353,共9页
太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component ana... 太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component analysis,PCA)和长短期记忆(Long short-term memory,LSTM)神经网络与误差补偿的光热电站短期DNI预测模型。首先,充分考虑影响DNI的环境因素,研究气象参数与DNI间的关系,利用近邻传播(Affinitypropagation,AP)聚类算法得到同一天气下的典型日,利用EEMD将原始DNI序列进行分解得到各子模态,降低序列的非平稳性;其次,利用PCA得到关键影响因子,使原始序列相关性和冗余性降低,减少模型输入维度;然后,利用LSTM网络对各分解子模态建模预测得到初始预测DNI序列,将其与真实序列作差,得到两者间的误差序列,重新建立LSTM网络对误差序列进行预测,即误差补偿;最后,将初始预测DNI与误差序列求和,得到最终的预测模型,实现对光热电站短期DNI的预测。预测结果表明,该预测模型效果较好,预测精度达94%。 展开更多
关键词 直接法向辐射 光热发电 集合经验模态分解 主成分分析 长短期记忆神经网络 误差补偿
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测 被引量:1
15
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
16
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
基于LSTM-FC模型的充电站短期运行状态预测
17
作者 毕军 王嘉宁 王永兴 《华南理工大学学报(自然科学版)》 北大核心 2025年第2期58-67,共10页
公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数... 公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数据,提出一种基于长短时记忆(LSTM)网络与全连接(FC)网络结合的充电站内可用充电桩预测模型,有效结合了历史充电状态序列和相关特征。首先,将兰州市某充电站的订单数据转化为可用充电桩数量,并进行数据预处理;其次,提出了基于LSTM-FC的充电站运行状态预测模型;最后,将输入步长、隐藏层神经元数量和输出步长3种参数进行单独测试。为验证LSTM-FC模型的预测效果,将该模型与原始LSTM网络、BP神经网络模型和支持向量回归(SVR)模型进行对比。结果表明:LSTM-FC模型的平均绝对百分比误差分别降低了0.247、1.161和2.204个百分点,具有较高的预测精度。 展开更多
关键词 lstm神经网络 全连接网络 电动汽车 充电站运行状态
在线阅读 下载PDF
考虑风速空间异质性的LSTM-AM雾天能见度预测模型
18
作者 王小建 林智婕 +4 位作者 马飞 苏彤 白元旦 郭庆元 黄凯 《气候与环境研究》 北大核心 2025年第4期439-449,共11页
针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进... 针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进行量化,融合邻近点空间分布及风速差异信息,采用风向夹角和变异值对风速空间异质性特征进行加权,实现对风速空间异质性的有效提取;利用AM机制能加强对关键信息关注的优势对LSTM方法进行改进,以有效捕捉和反映关键时刻气象因子对雾天能见度的影响,增强模型对重要时序信息关注的能力和模型预测的准确性,实现风速空间异质性下对雾天能见度的预测。研究结果表明,本文模型相关系数提升10%~20%,均方根误差下降25%~40%,平均绝对误差下降26.3%~39.1%,具有较高的雾天能见度预测精度。 展开更多
关键词 空间异质性 半变异函数 长短期记忆神经网络 注意力机制 雾天能见度
在线阅读 下载PDF
CNN-DLSTM结合迁移学习的小样本轴承故障诊断方法
19
作者 仇芝 徐泽瑜 +2 位作者 陈涛 石明江 韦明辉 《机械科学与技术》 北大核心 2025年第2期288-297,共10页
针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习... 针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习的故障诊断方法。该诊断方法基于电机振动数据,利用CNN提取故障特征;将特征作为DLSTM的输入,进一步学习、编码从CNN中学习的特征序列信息,捕获高级特征用于故障分类;首先用充足的西储轴承数据对该故障诊断模型进行预训练,再利用迁移学习放松训练数据和测试数据可不必独立同分布的能力,使用自制实验平台的小样本数据微调预训练模型。最后用迁移学习后的模型,对跨工况、跨型号、跨故障的故障轴承数据进行模拟实验。结果表明,所提出的方法与其他方法相比鲁棒性强,训练速度更快,能够更精确的诊断故障,平均诊断精度达到99%以上。 展开更多
关键词 小样本数据集故障诊断 卷积神经网络 长短期记忆网络 迁移学习
在线阅读 下载PDF
一种基于CSO-LSTM的新能源发电功率预测方法
20
作者 顾慧杰 方文崇 +3 位作者 周志烽 朱文 马光 李映辰 《计算机科学》 北大核心 2025年第S1期747-757,共11页
随着新能源发电技术的快速发展与广泛普及,该类技术已经成为电力系统中关键的一环。其中,对新能源发电功率的准确预测对于电力系统的合理规划有着重要的意义。然而,现有的新能源发电功率预测方法仍存在以下挑战:1)基于深度神经网络的预... 随着新能源发电技术的快速发展与广泛普及,该类技术已经成为电力系统中关键的一环。其中,对新能源发电功率的准确预测对于电力系统的合理规划有着重要的意义。然而,现有的新能源发电功率预测方法仍存在以下挑战:1)基于深度神经网络的预测模型的超参数对模型的预测性能有着重要的影响,而目前大多数算法仍采用人工确定的方法为超参赋值;2)现有的预测模型难以高效地挖掘时序数据中的长期依赖关系,从而影响预测精度。针对上述问题,本文提出了一种基于CSO-LSTM(Competitive Swarm Optimizer-Long Short-Term Memory)的新能源发电功率预测方法,旨在利用一种两阶段的模型综合地提升预测性能。首先,在模型的第一阶段提出了一种基于竞争群优化的LSTM超参数优化算法,利用竞争群优化算法良好的探索能力和全局优化能力,实现预测模型超参数的自适应调整。然后,在模型的第二阶段设计了一种基于组合多门控机制的LSTM模型,该方法结合自注意力门控机制和组合多个门控网络用于挖掘新能源发电时序数据中的长期依赖关系,从而进一步地适应不同时间尺度下的新能源生成模式。最后,在2个真实数据集和1个仿真数据集上与4个先进的预测方法进行了对比实验,实验结果验证了提出的CSO-LSTM模型的有效性和执行效率。 展开更多
关键词 竞争群优化 长短期记忆神经网络 新能源发电功率预测 多尺度时序数据挖掘 参数优化
在线阅读 下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部