智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题...智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。展开更多
建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性...建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.展开更多
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ...At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.展开更多
负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer...负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer网络和多任务学习结构的基本原理进行了介绍;然后通过基于随机森林的特征选择步骤提取反映负荷特性和变化规律的典型指标,构建多任务学习输入特征,基于Transformer网络构建多任务学习权值共享层,并通过全连接层输出多能负荷的预测值;最后通过实际园区微能源系统的数据验证所提方法和算法的有效性,结果表明本文所提模型可以充分学习电-热耦合特征,提高负荷预测的精度。展开更多
文摘建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.
文摘At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.
文摘负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer网络和多任务学习结构的基本原理进行了介绍;然后通过基于随机森林的特征选择步骤提取反映负荷特性和变化规律的典型指标,构建多任务学习输入特征,基于Transformer网络构建多任务学习权值共享层,并通过全连接层输出多能负荷的预测值;最后通过实际园区微能源系统的数据验证所提方法和算法的有效性,结果表明本文所提模型可以充分学习电-热耦合特征,提高负荷预测的精度。