In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat...In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.展开更多
Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes...Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.展开更多
High sucrose content in traditional hawthorn leathers limits the potential consumption, particularly for elders and diabetics. In this study, sucrose-free hawthorn leathers were formulated with 75% fructooligosacchari...High sucrose content in traditional hawthorn leathers limits the potential consumption, particularly for elders and diabetics. In this study, sucrose-free hawthorn leathers were formulated with 75% fructooligosaccharides(FOS) and 25% xylooligosaccharides(XOS)(HLF75), which exhibited comparable morphology and sensory properties to the traditional ones. Then, the anti-obesity activity of HLF75 was investigated using high-fat diet(HFD) fed C57BL/6J mice. Comparing with traditional hawthorn leathers, HLF75 supplementation in HFD significantly decreased the levels of blood glucose and serum lipid. The histomorphologies of liver and subcutaneous fat tissues were ameliorated by HLF75, as well as the down-regulated m RNA expression levels of IL-1β, Nos2 and Cox-2 in the liver. M oreover, the protein levels of M y D88 and NF-κB in the liver were suppressed by HLF75 treatment with decreased F4/80-positive macrophage number. Ho wever, the expression levels of PI3K, phosphorylated-AKT(Thr308), and phosphorylated-m TOR(Ser2448) proteins related to glucose metabolism were increased in the liver. Moreover, fat synthesis-related gene expression in HLF75-fed mice was suppressed while expressions of lipolysis genes were improved. Thus, HLF75 supplementation alleviated HFD-induced obesity through the alleviation of inflammation and restoration of the disturbed glucose and lipid metabolism. Functional oligosaccharides could be effective sucrose substitutes in hawthorn leathers and enable their potential utilization as functional foods.展开更多
Artificial leather and synthetic leather products have more than 60 years of development history,because the cost of artificial leather is lower than real leather,the manufacturing process is relatively simple,widely ...Artificial leather and synthetic leather products have more than 60 years of development history,because the cost of artificial leather is lower than real leather,the manufacturing process is relatively simple,widely used in textile,automotive and furniture decoration fields.展开更多
基金supported by the National Natural Science Foundation of China(22308210)the Scientific Research Program Funded by Shaanxi Provincial Education Department(23JK0350)+3 种基金the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(KFKT2021-12)the Opening Project of Key Laboratory of Leather Chemistry and Engineering(Sichuan University),Ministry of Education(2022)the RIKEN-MOST Project between the Ministry of Science and Technology of the People's Republic of China(MOST)and RIKEN,the China Scholarship Council(202108610127)the Natural Science Foundation of Shaanxi University of Science&Technology(2019BT-44).
文摘In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.
基金Funding of Harbin Institute of Technology (Shenzhen) (DD45001015)NSFC/RGC Joint Research Scheme (Project N_City U123/15)+2 种基金the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20130401145617276 and R-IND4903)City University of Hong Kong (PJ7004645)the Hong Kong Polytechnic University (1-BBA3) supported this work
文摘Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
基金supported by the National Natural Science Foundation of China (31630096)。
文摘High sucrose content in traditional hawthorn leathers limits the potential consumption, particularly for elders and diabetics. In this study, sucrose-free hawthorn leathers were formulated with 75% fructooligosaccharides(FOS) and 25% xylooligosaccharides(XOS)(HLF75), which exhibited comparable morphology and sensory properties to the traditional ones. Then, the anti-obesity activity of HLF75 was investigated using high-fat diet(HFD) fed C57BL/6J mice. Comparing with traditional hawthorn leathers, HLF75 supplementation in HFD significantly decreased the levels of blood glucose and serum lipid. The histomorphologies of liver and subcutaneous fat tissues were ameliorated by HLF75, as well as the down-regulated m RNA expression levels of IL-1β, Nos2 and Cox-2 in the liver. M oreover, the protein levels of M y D88 and NF-κB in the liver were suppressed by HLF75 treatment with decreased F4/80-positive macrophage number. Ho wever, the expression levels of PI3K, phosphorylated-AKT(Thr308), and phosphorylated-m TOR(Ser2448) proteins related to glucose metabolism were increased in the liver. Moreover, fat synthesis-related gene expression in HLF75-fed mice was suppressed while expressions of lipolysis genes were improved. Thus, HLF75 supplementation alleviated HFD-induced obesity through the alleviation of inflammation and restoration of the disturbed glucose and lipid metabolism. Functional oligosaccharides could be effective sucrose substitutes in hawthorn leathers and enable their potential utilization as functional foods.
文摘Artificial leather and synthetic leather products have more than 60 years of development history,because the cost of artificial leather is lower than real leather,the manufacturing process is relatively simple,widely used in textile,automotive and furniture decoration fields.