期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Least Squares-support Vector Machine Load Forecasting Approach Optimized by Bacterial Colony Chemotaxis Method
1
作者 ZENG Ming LU Chunquan +1 位作者 TIAN Kuo XUE Song 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0009-I0009,共1页
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c... During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed. 展开更多
关键词 short-term load forecasting hyper-parameters selection bacterial colony chemotaxis(BCC) least squares support vector machine(ls-svm)
在线阅读 下载PDF
基于提升小波和LS-SVM的大坝变形预测 被引量:7
2
作者 秦栋 郑雪琴 许后磊 《水电能源科学》 北大核心 2010年第9期64-66,共3页
提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该... 提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该方法较符合实际情况,具有很高的预测精度和良好的泛化能力。 展开更多
关键词 提升小波 ls-svm 大坝变形 变形预测 Support vector machine Least Square LIFTING Wavelet Based 最小二乘支持向量机 预测结果 支持向量机模型 效应量 预测精度 预测方法 小波分析 监测数据 泛化能力 训练 提取 合成
在线阅读 下载PDF
基于EMD近似熵和LS-SVM的机械故障智能诊断 被引量:7
3
作者 戴桂平 《机械强度》 CAS CSCD 北大核心 2011年第2期165-169,共5页
故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键,针对此问题,提出一种基于经验模式分解(empirical mode decomposition,EMD)近似熵和最小二乘支持向量机(least square support vector machine,LS-SVM)的机械... 故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键,针对此问题,提出一种基于经验模式分解(empirical mode decomposition,EMD)近似熵和最小二乘支持向量机(least square support vector machine,LS-SVM)的机械故障诊断新方法。利用EMD良好的局域化特性和近似熵表征信号复杂性规律来量化故障特征,再与LS-SVM相结合进行故障类型识别。首先,对故障振动信号进行EMD分解,得到若干个反映故障信息的本征模函数(intrinsic mode function,IMF);其次,选取前4个IMF的近似熵值作为信号的特征向量;最后将构造的特征向量输入到LS-SVM分类器进行故障类型识别。仿真表明,该方法能有效地提取故障特征,与传统的BP(back propagation)网络相比,具有训练样本少、训练时间短、识别率高等优点。 展开更多
关键词 经验模式分解(empirical mode decomposition EMD) 近似熵 最小二乘支持向量机(least SQUARE support vector machine ls-svm) 故障诊断
在线阅读 下载PDF
基于鲁棒LS-SVM的控制图模式识别 被引量:1
4
作者 程志强 马义中 Zhi-qiang Yi-zhong 《计量学报》 CSCD 北大核心 2009年第6期-,共3页
提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练... 提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练结果泛化能力强,计算方法简单迅速. Abstract: A technique based on the robust least squares support vector machines(LS-SVM) used for control charts pattern recognition is proposed, the applied feasibility and validity of this technique in process quality diagnosis is also investigated. Theoretical research and experimental results show that this approach performs well upon the six typical control charts pattern recognition with high recognition accuracy, simple computation and fast training process, and the preeminent generalization ability on the condition of small sample size. 展开更多
关键词 鲁棒 ls-svm 控制图模式识别 Robust Based PATTERN RECOGNITION PATTERN RECOGNITION control charts support vector machines generalization ability Theoretical research 最小二乘支持向量机 training PROCESS PROCESS quality least SQUARES 模式识别方法 small sample 模式识别器 质量诊断 训练结果
在线阅读 下载PDF
Combined forecast method of HMM and LS-SVM about electronic equipment state based on MAGA 被引量:1
5
作者 Jianzhong Zhao Jianqiu Deng +1 位作者 Wen Ye Xiaofeng Lü 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期730-738,共9页
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin... For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability. 展开更多
关键词 parameter estimation hidden Markov model(HMM) least square support vector machinels-svm multi-agent genetic algorithm(MAGA) state forecast
在线阅读 下载PDF
基于遗传算法和最小二乘支持向量机的织物剪切性能预测 被引量:2
6
作者 卢桂馥 王勇 +1 位作者 窦易文 Gui-fu Yi-wen 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神... 提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力. Abstract: A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method. 展开更多
关键词 基于遗传算法 最小二乘支持向量机 织物 剪切 性能预测模型 SUPPORT vector machineS sampling data SUPPORT vector machineS generalization ability simulation results linear regression genetic algorithm BP neural network prediction model 线性回归方法 ls-svm least square 归一化处理 new method 预测结果
在线阅读 下载PDF
基于可见近红外光谱技术的车蜡品牌无损鉴别方法研究 被引量:1
7
作者 张瑜 谈黎虹 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第2期381-384,共4页
探讨了可见-近红外光谱技术快速无损识别不同品牌车蜡的可行性。实验一共获得104样本,其中40个样本(建模集)用于建立模型,剩余64个样本(预测集)被用于独立验证建立好的模型。基于五种不同品牌车蜡的可见-近红外光谱分别建立了线性判别分... 探讨了可见-近红外光谱技术快速无损识别不同品牌车蜡的可行性。实验一共获得104样本,其中40个样本(建模集)用于建立模型,剩余64个样本(预测集)被用于独立验证建立好的模型。基于五种不同品牌车蜡的可见-近红外光谱分别建立了线性判别分析(linear Discriminant Analysis,LDA)和最小二乘支持向量机(least square-support vector machine,LS-SVM)模型。基于两个算法的全波段光谱模型的预测集正确率分别达到了84%和97%。进一步采用连续投影算法(successive projections algorithm,SPA)算法从751波段中选取了7个特征波段(351,365,401,441,605,926和980nm)。基于SPA选择的变量建立LS-SVM模型,准确率依然保持在97%。说明SPA选择的特征波段包含了对于车蜡品牌鉴别最重要的光谱信息,而大多数无用信息则被有效剔除。将SPA与LS-SVM算法的车蜡识别模型在保证正确率的基础上,还可以大大降低模型计算复杂程度,说明该模型能快速准确的从车蜡可见-近红外光谱中提取有效信息,并实现车蜡品牌的无损鉴别。 展开更多
关键词 车蜡 Vis-NIR光谱 线性判别方法 最小二乘支持向量机 连续投影算法 Linear DISCRIMINATION analysis (LDA) Least-square support vector machine (ls-svm ) Successive projections algorithm (SPA )
在线阅读 下载PDF
基于机器视觉的西瓜子外观品质检测与分类
8
作者 陈锡爱 柯霜 +3 位作者 王凌 许宏 王斌锐 郑恩辉 《计算机工程与应用》 CSCD 2014年第16期164-167,共4页
采用机器视觉获取了西瓜子的面积、周长、最小外接矩和圆形度等外形特征,而后使用遗传算法优化的最小二乘支持向量机算法对西瓜子外观品质进行分类识别,最终实现了破损瓜子、普通瓜子和优质瓜子的区分。实验结果表明,基于最小二乘支持... 采用机器视觉获取了西瓜子的面积、周长、最小外接矩和圆形度等外形特征,而后使用遗传算法优化的最小二乘支持向量机算法对西瓜子外观品质进行分类识别,最终实现了破损瓜子、普通瓜子和优质瓜子的区分。实验结果表明,基于最小二乘支持向量机分类的西瓜子外形检测方法能够很好地实现西瓜子外观品质的识别检测。 展开更多
关键词 机器视觉 西瓜子 图像处理 支持向量机 遗传算法 Least SQUARES Support vector machines(ls-svm)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部