期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
复杂场景下无人驾驶障碍检测算法
1
作者 程铄棋 伊力哈木·亚尔买买提 +2 位作者 谢丽蓉 侯雪扬 马颖 《哈尔滨工业大学学报》 北大核心 2025年第6期160-170,共11页
为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷... 为解决复杂路况下因目标遮挡及小目标信息缺失导致现有无人驾驶目标检测算法准确率低的问题,提出了基于改进YOLOv8的无人驾驶障碍检测算法(YOLOv8 effectual accurate,YOLOv8-EA)。该算法首先引入快速神经网络作为主干网络,利用部分卷积提取空间特征,保证特征的完整性;其次,利用大内核深度卷积层重构快速金字塔池化层,采用并行多尺度连接的方式融合不同分辨率的自注意力特征,增强模型在复杂环境中的特征提取能力;然后,采用多分支结构和重参数化抑制信息干扰,并通过不断堆叠梯度流的方式提升特征融合能力;最后,基于部分卷积设计小目标检测头以处理小目标像素级特征信息。对比实验结果表明,相较于原模型,上述改进后,模型在性能上均有明显提升,并在检测精度上显著优于其他改进方式。消融实验结果表明,YOLOv8-EA在障碍检测精度方面取得显著提升,在KITTI数据集下,mAP50和mAP50-95分别提升了2.4%和4.7%;采用SODA10M数据集进行二次验证,mAP50和mAP50-95分别提升了1.4%和1.1%,证明YOLOv8-EA算法具有很好的泛化能力。所提算法在处理遮挡目标及小目标时,展现了出色的性能,为无人驾驶系统中的后续决策任务提供了更加可靠的支持。 展开更多
关键词 目标检测 无人驾驶 复杂道路场景 部分卷积 大内核深度卷积层
在线阅读 下载PDF
基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法 被引量:27
2
作者 赵春江 梁雪文 +3 位作者 于合龙 王海峰 樊世杰 李斌 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期300-312,共13页
笼养模式下鸡/蛋自动识别与计数在低产能鸡判别及鸡舍智能化管理方面具有重要作用,针对鸡舍内光线不均、鸡只与笼之间遮挡及鸡蛋粘连等因素导致自动计数困难的问题,本研究以笼养鸡只与鸡蛋为研究对象,基于YOLO v7-tiny提出一种轻量型网... 笼养模式下鸡/蛋自动识别与计数在低产能鸡判别及鸡舍智能化管理方面具有重要作用,针对鸡舍内光线不均、鸡只与笼之间遮挡及鸡蛋粘连等因素导致自动计数困难的问题,本研究以笼养鸡只与鸡蛋为研究对象,基于YOLO v7-tiny提出一种轻量型网络YOLO v7-tiny-DO用于鸡只与鸡蛋识别,并设计自动化分笼计数方法。首先,采用JRWT1412型无畸变相机与巡检设备搭建自动化数据采集平台,获取2146幅笼养鸡只图像用于构建数据集。然后,在YOLO v7-tiny网络基础上应用指数线性单元(Exponential linear unit,ELU)激活函数减少模型训练时间;将高效层聚合网络(Efficient layer aggregation network,ELAN)中的常规卷积替换为深度卷积减少模型参数量,并在其基础上添加深度过参数化组件(深度卷积)构建深度过参数化深度卷积层(Depthwise over-parameterized depthwise convolutional layer,DO-DConv),以提取目标深层特征;同时在特征融合模块引入坐标注意力机制(Coordinate attention mechanism,CoordAtt),提升模型对目标空间位置信息的感知能力。试验结果表明,YOLO v7-tiny-DO识别鸡只和鸡蛋的平均精确率(Average precision,AP)分别为96.9%与99.3%,与YOLO v7-tiny相比,鸡只与鸡蛋的AP分别提高3.2、1.4个百分点;改进后模型内存占用量为5.6 MB,比原模型减小6.1 MB,适合部署于算力相对有限的巡检机器人;YOLO v7-tiny-DO在局部遮挡、运动模糊和鸡蛋粘连情况下均能实现高精度识别与定位,在光线昏暗情况下识别结果优于其他模型,具有较强的鲁棒性。最后,将本文算法部署到NVIDIA Jetson AGX Xavier边缘计算设备,在实际场景下选取30个鸡笼开展计数测试,持续3 d。结果表明,3个测试批次鸡只与鸡蛋的计数平均准确率均值分别为96.7%和96.3%,每笼平均绝对误差均值分别为0.13只鸡和0.09枚鸡蛋,可为规模化养殖场智能化管理提供参考。 展开更多
关键词 笼养鸡/蛋 YOLO v7-tiny 深度过参数化深度卷积层 计数 边缘计算
在线阅读 下载PDF
Lite-YOLOv3轻量级行人与车辆检测网络 被引量:8
3
作者 涂媛雅 汤国放 张建勋 《小型微型计算机系统》 CSCD 北大核心 2023年第1期211-217,共7页
基于卷积神经网络的目标检测在智能交通领域有着重要的应用,但存在复杂网络模型计算速度慢、简单网络模型精准度低两种问题.针对此问题,本文提出了基于Lite-YOLOv3的行人与车辆检测方法,该方法基于Tiny-YOLOv3网络模型进行改进.首先,本... 基于卷积神经网络的目标检测在智能交通领域有着重要的应用,但存在复杂网络模型计算速度慢、简单网络模型精准度低两种问题.针对此问题,本文提出了基于Lite-YOLOv3的行人与车辆检测方法,该方法基于Tiny-YOLOv3网络模型进行改进.首先,本文采用卷积代替下采样方案解决Tiny-YOLOv3网络特征提取损失问题.然后其骨干层采用改进的瓶颈块(BottleneckBlock)对前一层网络特征图进行降维、连接输入输出特征图,使得网络参数量大幅下降、防止网络退化.其预测层采用改进后的深度可分离卷积块(Depthwise Separable Convolution),分离深度卷积和点卷积可以有效降低网络运算成本,加快网络运算速度.Lite-YOLOv3相较于Tiny-YOLOv3网络的运算速度提升了27.27%,mAP提高了9.07%. 展开更多
关键词 tiny-YOLOv3算法 车辆检测 行人检测 瓶颈层 深度可分离卷积
在线阅读 下载PDF
基于生成对抗网络的带式输送机异物检测方法 被引量:5
4
作者 张立亚 《工矿自动化》 CSCD 北大核心 2023年第11期53-59,共7页
煤矿井下胶带运输图像具有照度低、细节不清晰、背景干扰等特点,现有的带式输送机异物检测模型存在精度低、灵活性差、计算量大、优化空间存在差异等问题。针对上述问题,提出了一种基于生成对抗网络(GAN)的带式输送机异物检测方法。对... 煤矿井下胶带运输图像具有照度低、细节不清晰、背景干扰等特点,现有的带式输送机异物检测模型存在精度低、灵活性差、计算量大、优化空间存在差异等问题。针对上述问题,提出了一种基于生成对抗网络(GAN)的带式输送机异物检测方法。对胶带运输过程视频文件进行预处理,分类得到正常图像、异常图像,制作实验数据集对改进GANomaly模型进行训练,再通过训练好的模型进行带式输送机异物检测。在训练阶段,将不含异物的带式输送机图像作为输入;在测试阶段,将含有异物的带式输送机图像作为输入,得到的重构图像与输入网络的原图像作差,即可得到异物的具体位置。GANomaly模型轻量化改进方法:在GANomaly基础网络模型中加入深度可分离卷积残差模块,采用深度可分离卷积代替原有主干网络中的卷积操作,大幅降低了模型计算量,同时减少了参数的冗余计算,能够明显提高异物检测速度;通过合并多个批量归一化(BN)层,加快模型的收敛迭代速度,提高模型的泛化收敛能力,有效避免梯度消失。实验结果表明,改进GANomaly模型相较于传统GANomaly模型,在运行速度上提升了6.27%,评价指标F1分数、AUC、召回率(Recall)和平均精度均值(mAP)分别提升了19.05%,22.22%,15.00%,17.14%。 展开更多
关键词 带式输送机 异物检测 生成对抗网络 GANomaly 深度可分离卷积 BN层合并 轻量化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部