The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.展开更多
狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而...狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而导致算法陷入局部最优的风险;并受狼群的繁衍方式的启发,在二进制狼群算法的基础上提出了求解多维背包问题的改进二进制狼群算法(improve binary wolf pack algorithm,IBWPA)。通过求解19组不同规模的典型多维背包算例和与其他算法的对比分析,例证了算法的有效性和计算稳定性。展开更多
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.
文摘狼群算法启发于狼群群体生存智慧,已被用于复杂函数寻优和0-1普通背包问题求解。针对多维背包问题特点,设计了试探装载式的修复机制有效修复和改进人工狼群中的不可行解,改进了传统基于大惩罚参数的目标函数,减小了由于惩罚参数过大而导致算法陷入局部最优的风险;并受狼群的繁衍方式的启发,在二进制狼群算法的基础上提出了求解多维背包问题的改进二进制狼群算法(improve binary wolf pack algorithm,IBWPA)。通过求解19组不同规模的典型多维背包算例和与其他算法的对比分析,例证了算法的有效性和计算稳定性。