期刊文献+

基于分治的背包问题DNA计算机算法 被引量:20

Improved Molecular Solutions for the Knapsack Problem on DNA-Based Supercomputing
在线阅读 下载PDF
导出
摘要 如何减少DNA计算机在求解大型难解问题中以问题输入纯指数增长的DNA链数,已成为DNA计算机研究的重要内容.将分治策略应用于背包问题的DNA分子计算中,提出一种求解背包问题的新的DNA计算机算法.算法由n位并行减法器、n位数据搜索器和其他4个子算法组成.算法的DNA链数可达到亚指数的O(2q/2),其中q为背包问题的维数.与最近文献结论进行的对比分析表明:算法将求解背包问题所需的DNA链数从O(2q)减少至O(2q/2),最大链长度减少为原来的1/2,因此,理论上新算法在试管级水平上能将可破解的背包公钥的维数从60提高到120. The DNA-based supercomputation has solved hard computational problems such as NP-complete problems in polynomial increasing time by using its superparallel and high-density power. However, almost all the current DNA computing strategies are based on the enumerative method, which causes the size of the initial DNA strands to increase exponentially. How to decrease the number of DNA strands increasing exponentially in these applications is very important in the research on DNA computers. For the objectivity of solution of the knapsack problem which is a famous NP-complete problem with DNA computer, the strategy of divide-and-conquer is introduced into the DNA-based supercomputing and a DNA algorithm is proposed. The proposed algorithm consists of an n-bit parallel subtracter, an n-bit parallel searcher, and other four sub-procedures. It is demonstrated that the proposed algorithms can first reduce the number of DNA library strands from O(2^q) to O(2^q/2) to solve a q-dimension knapsack instance, while keeping the operation time not obviously changed. It is shown that the traditional technology can still bear importance even in designing DNA computer algorithm. Furthermore, this work indicates that the cryptosystems using public key are perhaps insecure, because, theoretically, tbe 120-variable knapsack public key can be easily broken provided that the technology of DNA computers is mature.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第6期1063-1070,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603053 60274026 60373089 60403002) 教育部科学技术研究重点基金项目(05128)~~
关键词 DNA计算 NP完全问题 背包问题 分治法 DNA-based computing NP-complete problem knapsack problem divide-and-conquer
作者简介 李肯立,1971年生,博士后,副教授,中国计算机学会高级会员,主要研究方向为并行计算、生物计算.(lkl510@263.net) 姚凤娟,1981年生,硕士研究生,主要研究方向为生物计算. 李仁发,1957年生,教授,博士生导师,主要研究方向为无线网络、移动计算、嵌入式计算. 许进,1959年生,教授,博士生导师,主要研究方向为DNA计算、DNA计算机、神经网络、遗传算法、图论等.
  • 相关文献

参考文献15

  • 1R R Sinden.DNA Structure and Function[M].London:Academic Press,1994
  • 2L Adleman.Molecular computation of solutions to combinatorial problems[J].Science,1994,266:1021-1024
  • 3R J Lipton.DNA solution of hard computational problems[J].Science,1995,268:542-545
  • 4M H Garzon,R J Deaton.Biomolecutar computing and programming[J].IEEE Trans on Evolutionary Computation,1999,3(3):236-250
  • 5R S Braich,N chelyapov,C Johnson.Solution of a 20-variable 3-SATproblem on a DNA computer[J].Science,2002,296 (19):499-502
  • 6Ho Michael,W L Chang,M Guo,et al.Fast parallel solution for set-packing and clique problems by DNA-based computing[J].IEICE Trans on Information and System,2004,E87-D (7):1782-1788
  • 7W L Chang,M Guo,H Michael.Fast parallel molecular algorithms for DNA-based computation[J].IEEE Trans on Nanobioscience,2005,4(2):133-163
  • 8李源,方辰,欧阳颀.最大集团问题的DNA计算机进化算法[J].科学通报,2004,49(5):439-443. 被引量:20
  • 9许进,李三平,董亚非,魏小鹏.粘贴DNA计算机模型(Ⅱ):应用[J].科学通报,2004,49(4):299-307. 被引量:32
  • 10C S Laih,J Y Lee,L Harn,et al.Linearly shift knapsack public-key cryptosystem[J].IEEE Journal on Selected Areas Communications,1989,7(4):534-539

二级参考文献49

  • 1[1]Ruben A J, Landweber L F. The past, present and future of molecular computing. Nature Reviews Molecular Cell Biology, 2000, 1: 69~72
  • 2[2]Adleman L. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021~1024
  • 3[3]Ouyang Q, Kaplan P D, Liu S, et al. DNA solution of the maximal clique problem. Science, 1997, 278: 446~449
  • 4[4]Braich R S, Chelyapov N, Johnson C, et al. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 2002, 296: 499~502
  • 5[5]Faulhammer D, Cukras A R, Lipton R J, et al. Molecular computation: RNA solutions to chess problems. Proc Natl Acad Sci USA, 2000, 97: 1385~1389
  • 6[6]Benenson Y, Paz-Elizur T, Adar R, et al. Programmable and autonomous computing machine made of biomolecules. Nature, 2001, 414: 430~434
  • 7[7]Liu Q, Wang L, Frutos A G, et al. DNA computing on surfaces. Nature, 2000, 403: 175~179
  • 8[8]Ogihara M, Ray A. DNA computing on a chip. Nature, 2000, 403: 143~144
  • 9[9]Sakamoto K, Gouzu H, Komiya K, et al. Molecular computation by DNA hairpin formation. Science, 2000, 288: 1223~1226
  • 10[10]Wang L, Hall J G, Lu M, et al. A DNA computing readout operation based on structure-specific cleavage. Nat Biotechnol, 2001, 19: 1053~1059

共引文献67

同被引文献158

引证文献20

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部