期刊文献+
共找到680篇文章
< 1 2 34 >
每页显示 20 50 100
Radar Signal Intra-Pulse Modulation Recognition Based on Deep Residual Network
1
作者 Fuyuan Xu Guangqing Shao +3 位作者 Jiazhan Lu Zhiyin Wang Zhipeng Wu Shuhang Xia 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期155-162,共8页
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr... In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB). 展开更多
关键词 intra-pulse modulation low signal-to-noise deep residual network automatic recognition
在线阅读 下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
2
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
在线阅读 下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
3
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network Depthwise convolution
在线阅读 下载PDF
Method of Modulation Recognition Based on Combination Algorithm of K-Means Clustering and Grading Training SVM 被引量:10
4
作者 Faquan Yang Ling Yang +3 位作者 Dong Wang Peihan Qi Haiyan Wang 《China Communications》 SCIE CSCD 2018年第12期55-63,共9页
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s... For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition. 展开更多
关键词 CLUSTERING ALGORITHM FEATURE extraction GRADING ALGORITHM support VECTOR machine modulation recognition
在线阅读 下载PDF
Modulation Recognition in Maritime Multipath Channels:A Blind Equalization-Aided Deep Learning Approach 被引量:5
5
作者 Xuefei Ji Jue Wang +2 位作者 Ye Li Qiang Sun Chen Xu 《China Communications》 SCIE CSCD 2020年第3期12-25,共14页
Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals... Modulation recognition has been long investigated in the literature,however,the performance could be severely degraded in multipath fading channels especially for high-order Quadrature Amplitude Modulation(QAM)signals.This could be a critical problem in the broadband maritime wireless communications,where various propagation paths with large differences in the time of arrival are very likely to exist.Specifically,multiple paths may stem from the direct path,the reflection paths from the rough sea surface,and the refraction paths from the atmospheric duct,respectively.To address this issue,we propose a novel blind equalization-aided deep learning(DL)approach to recognize QAM signals in the presence of multipath propagation.The proposed approach consists of two modules:A blind equalization module and a subsequent DL network which employs the structure of ResNet.With predefined searching step-sizes for the blind equalization algorithm,which are designed according to the set of modulation formats of interest,the DL network is trained and tested over various multipath channel parameter settings.It is shown that as compared to the conventional DL approaches without equalization,the proposed method can achieve an improvement in the recognition accuracy up to 30%in severe multipath scenarios,especially in the high SNR regime.Moreover,it efficiently reduces the number of training data that is required. 展开更多
关键词 modulation recognition DEEP learning BLIND EQUALIZATION
在线阅读 下载PDF
Modulation Recognition with Frequency Offset and Phase Offset over Multipath Channels 被引量:1
6
作者 Mingqian Liu Zhaoxi Wen +1 位作者 Yunfei Chen Ming Li 《China Communications》 SCIE CSCD 2023年第10期58-69,共12页
Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fad... Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels. 展开更多
关键词 cyclic characteristics frequency and phase offset multi-path channels modulation recognition
在线阅读 下载PDF
Automatic Recognition Algorithm of AM Signals Based on Spectrum and Modulation Characters
7
作者 Xiao-Fei Zhang Liang Chang Pei-Ming Ren Rong Liu 《Journal of Electronic Science and Technology》 CAS 2012年第2期163-166,共4页
To meet the actual requirement of automatic monitoring of the shortwave signals under wide band ranges, a technique for automatic recognition is studied in this paper. And basing upon the spectrum and modulation chara... To meet the actual requirement of automatic monitoring of the shortwave signals under wide band ranges, a technique for automatic recognition is studied in this paper. And basing upon the spectrum and modulation characters of amplitude modulation (AM) signals, an automatic recognition scheme for AM signals is proposed. The proposed scheme is achieved by a joint judgment with four different characteristic parameters. Experiment results indicate that the proposed scheme can effectively recognize AM signals in practice. 展开更多
关键词 Amplitude modulation automatic recognition characteristic parameters shortwave radio.
在线阅读 下载PDF
A Signal Recognition Algorithm Based on Compressive Sensing and Improved Residual Network at Airport Terminal Area 被引量:1
8
作者 SHEN Zhiyuan LI Jia +1 位作者 WANG Qianqian HU Yingying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期607-615,共9页
It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition met... It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods. 展开更多
关键词 compressed sensing deep learning residual network modulation recognition
在线阅读 下载PDF
基于改进YOLOv7的变电站设备红外图像识别
9
作者 刘昕明 李玮 +1 位作者 吉建光 石光磁 《红外技术》 北大核心 2025年第1期63-71,共9页
高效快速地识别变电站设备是变电站安全状态检测中至关重要的一个环节。针对变电站场景复杂且目标设备尺度不同的特点,在YOLOv7的基础上引入PSA模块,实现局部和全局通道之间的信息交互,提高模型对不同尺度设备的识别精度。再结合PConv和... 高效快速地识别变电站设备是变电站安全状态检测中至关重要的一个环节。针对变电站场景复杂且目标设备尺度不同的特点,在YOLOv7的基础上引入PSA模块,实现局部和全局通道之间的信息交互,提高模型对不同尺度设备的识别精度。再结合PConv和GSConv,建立轻量化网络,在确保模型精度的同时提升检测速度。使用Dyhead将3个感知嵌入一个目标检测头中,提升了目标的检测能力。构建变电站设备红外图像数据集,并进行训练、测试和验证,与原来的YOLOv7算法对比,准确率提升了3%,模型减小了10%,满足高效快速识别变电设备的要求,为后续变电设备故障诊断提供了基础。 展开更多
关键词 变电站设备 红外图像识别 YOLOv7 PSA模块 轻量化网络 Dyhead
在线阅读 下载PDF
基于多通道轻量化的自动调制识别网络
10
作者 万进华 尚俊娜 张华娣 《电信科学》 北大核心 2025年第2期41-56,共16页
自动调制识别技术在无线通信领域具有十分重要的作用。现有的自动调制识别模型在识别精度上表现出色,但大多数方法在参数量与模型性能之间难以实现理想的平衡。针对该问题,设计了一种多通道融合的轻量化调制识别(multi-channel lightwei... 自动调制识别技术在无线通信领域具有十分重要的作用。现有的自动调制识别模型在识别精度上表现出色,但大多数方法在参数量与模型性能之间难以实现理想的平衡。针对该问题,设计了一种多通道融合的轻量化调制识别(multi-channel lightweight modulation recognition,MCLMR)网络。MCLMR网络将幅度、相位、频率以及零中心归一化瞬时幅度的谱密度最大值作为输入。使用可分离卷积模块巧妙地组合4个输入,从而深入挖掘这4个输入的空间相关性。设计了基于时间衰落多头自注意力(multi-head self-attention,MHSA)机制结合门控循环单元(gated recurrent unit,GRU)的GRU-MHSA(gated recurrent unit-multi-head self-attention)模块进一步提取时间相关性。可分离卷积模块与GRU-MHSA模块的结合在空间维度与时间维度提取信号特征。在基准RML2016.10a数据集上的仿真结果表明,所提方法优于其他9种典型方法。在2~18 dB信噪比下平均识别精度达到92.39%,最高识别精度达到93.36%,这说明MCLMR不仅参数量少,计算复杂度低,在识别精度上也表现出色。 展开更多
关键词 调制识别 轻量化网络 多模块融合 多头自注意力机制
在线阅读 下载PDF
基于阵列的神经网络水声通信信号多参数联合估计算法
11
作者 成乐 刘悦 +2 位作者 胡正良 朱宏娜 罗斌 《通信学报》 北大核心 2025年第1期67-78,共12页
针对水声信道复杂多变且衰减严重等问题,为提升非合作条件下水声通信信号的检测概率并扩大感知范围,设计了一种新型基于阵列多通道时频谱输入的神经网络多参数联合估计算法。该算法通过引入载波频率标签分配策略,将载波频率作为区分不... 针对水声信道复杂多变且衰减严重等问题,为提升非合作条件下水声通信信号的检测概率并扩大感知范围,设计了一种新型基于阵列多通道时频谱输入的神经网络多参数联合估计算法。该算法通过引入载波频率标签分配策略,将载波频率作为区分不同信号的关键物理特征,有效避免了频带外信号和噪声的干扰;利用端到端的多任务学习,能够同时完成信号检测、调制模式识别,以及对信号个数、载波频率、带宽和波达方向的联合估计,从而避免了传统算法中需要先进行波束成形再进行检测识别的复杂流程。仿真实验结果表明,在阵列阵元位置失配和信号被噪声掩蔽的情况下,所提算法仍能实现准确的信号估计。进一步的湖上实验验证了所提算法的实用性和泛化能力。 展开更多
关键词 多参数联合估计 波达方向估计 调制模式识别 阵列信号处理 神经网络
在线阅读 下载PDF
面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究
12
作者 李一帆 李聪聪 +1 位作者 李亚南 王斌 《现代电子技术》 北大核心 2025年第6期136-146,共11页
随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-Goo... 随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-GoogLeNet模型。该模型采用了三种不同层级的改进Inception模块,并将这些模块在网络深层和浅层结构中并行连接,在中层结构中引入残差结构,通过特征融合的方式显著提高了网络的计算效率和识别准确率。同时,针对异常行为数据集中动作单一的问题,自建了包含多种异常动作的数据集,并通过将一维动作时序数据二维图形化处理后使得行为动作特征更易于提取。实验结果表明,所提FDS-ABPG-GoogLeNet模型的准确率、灵敏度和特异性分别达到99.40%、99.49%和99.93%。 展开更多
关键词 异常行为识别 Inception模块 残差结构 特征融合 特征提取 卷积神经网络
在线阅读 下载PDF
基于监督对比学习的无线电引信干扰识别方法
13
作者 钱鹏飞 秦高林 +1 位作者 陈齐乐 郝新红 《北京航空航天大学学报》 北大核心 2025年第3期953-961,共9页
连续波调频多普勒引信在战场上容易受到干扰,从而导致弹药早炸失去毁伤能力。为了提高调频多普勒引信对信息型干扰的抗干扰能力,实现多种干扰信号与目标回波的区分,提出一种基于监督对比学习的目标与干扰信号分类识别方法。该方法首先... 连续波调频多普勒引信在战场上容易受到干扰,从而导致弹药早炸失去毁伤能力。为了提高调频多普勒引信对信息型干扰的抗干扰能力,实现多种干扰信号与目标回波的区分,提出一种基于监督对比学习的目标与干扰信号分类识别方法。该方法首先通过残差网络和自注意力机制搭建了主干网络;然后利用引入标签的方式改进了对比学习损失函数,实现了监督对比学习;最后采用中频信号搭建数据集,通过监督对比学习的方式来训练网络,从而实现对目标与干扰信号的分类和识别。仿真结果表明:该方法能够实现多种干扰种类与目标回波的识别,并且识别率能够达到98.7%。在低信噪比环境下的识别效果更为出色,在信噪比为−18 dB的环境下,仍然能有91.81%的识别率,相比普通残差网络的86.12%的识别率更高。 展开更多
关键词 调频多普勒引信 电子对抗 深度神经网络 监督对比学习 信号识别
在线阅读 下载PDF
基于复数深度神经网络的电磁信号调制识别
14
作者 袁德品 赵亮 葛宪生 《电子科技》 2025年第3期1-6,共6页
在复杂电磁环境区域中,较难获取信号调制类型。传统调制信号识别分类方法因自身缺陷导致识别成功率不佳。目前用于信号调制的深度学习方法均基于实数来表征和处理,但因丢失复数原本的内在联系而容易出现识别偏差。针对这种情况,文中将... 在复杂电磁环境区域中,较难获取信号调制类型。传统调制信号识别分类方法因自身缺陷导致识别成功率不佳。目前用于信号调制的深度学习方法均基于实数来表征和处理,但因丢失复数原本的内在联系而容易出现识别偏差。针对这种情况,文中将复数深度神经网络应用于电磁信号的调制识别,设计了复卷积、批归一化和全连接网络等复数卷积深度神经网络,并通过Softmax函数完成最终的分类任务。采用标准数据集RML2016.10a完成网络训练以及测试工作。实验结果表明,通过训练后的复数深度神经网络优于传统识别算法,可以有效提升电磁信号识别率。 展开更多
关键词 复数神经网络 复杂电磁环境 调制样式 相位信息 调制识别 I/Q数据 潜在特征 电磁信号
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法
15
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin Transformer模块 多尺度胶囊Swin Transformer网络 SAR图像目标识别
在线阅读 下载PDF
基于运动阵列微波成像与多尺度可变形卷积网络的引信目标识别方法
16
作者 韩燕文 闫晓鹏 +2 位作者 高晓峰 伊光华 代健 《兵工学报》 北大核心 2025年第3期214-224,共11页
针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)... 针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)的引信目标识别方法。在充分分析引信运动过程中回波相位变化规律的基础上建立FMCW运动阵列天线模型,通过运动合成扩充引信天线虚拟阵元数,大幅度提升引信方位向分辨率,实现目标距离-方位的二维高分辨成像。同时,深入分析弹目交会过程中由于目标位置、姿态、距离等状态变化形成的图像多尺度特性,构建MSDCN目标识别模型,提高引信对复杂动态交会场景下目标成像多尺度特性的自适应识别能力。实验结果表明,该方法能够显著提高引信方位分辨能力,在不同目标场景下均取得较好的成像和识别效果,对典型目标多尺度像识别准确率达到94%,-6 dB信噪比时目标识别准确率仍能达到88%。 展开更多
关键词 引信 调频连续波 运动阵列 距离-方位二维像 多尺度可变形卷积网络 目标识别
在线阅读 下载PDF
轻量型Swin Transformer与多尺度特征融合相结合的人脸表情识别方法
17
作者 李艳秋 李胜赵 +1 位作者 孙光灵 颜普 《光电工程》 北大核心 2025年第1期24-37,共14页
针对Swin Transformer模型应用在表情识别上参数量过大、实时性较差和对表情中存在的复杂且微小的表情变化特征捕捉能力有限的问题,提出了一个轻量型Swin Transformer和多尺度特征融合(EMA)模块相结合的人脸表情识别方法。该方法首先利... 针对Swin Transformer模型应用在表情识别上参数量过大、实时性较差和对表情中存在的复杂且微小的表情变化特征捕捉能力有限的问题,提出了一个轻量型Swin Transformer和多尺度特征融合(EMA)模块相结合的人脸表情识别方法。该方法首先利用提出的SPST模块替换掉原Swin Transformer模型第四个stage中的Swin Transformer block模块,来降低模型的参数量,实现模型的轻量化。然后在轻量型模型的第二个stage后嵌入了多尺度特征融合(EMA)模块,通过多尺度特征提取和跨空间信息聚合,有效地增强了模型对人脸表情细节的捕捉能力,从而提高人脸表情识别的准确性和鲁棒性。实验结果表明,所提方法在JAFFE、FERPLUS、RAF-DB和FANE这4个公共数据集上分别达到了97.56%、86.46%、87.29%和70.11%的识别准确率,且相比于原Swin Transformer模型,改进后的模型参数量下降了15.8%,FPS提升了9.6%,在保持模型较低参数量的同时,显著增强了模型的实时性。 展开更多
关键词 表情识别 Swin Transformer SPST模块 EMA模块
在线阅读 下载PDF
基于幅值密度特征的调制格式识别方法
18
作者 周顺勇 胡琴 +2 位作者 陆欢 张航领 彭梓洋 《光通信技术》 北大核心 2025年第1期101-106,共6页
为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准... 为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准识别。在28 GBaud正交相移键控(QPSK)、8电平正交幅度调制(8QAM)、16QAM、32QAM、64QAM和128QAM传输系统中验证了该方案的可行性。实验结果表明:每种调制格式在达到100%识别准确率时所需的最低光信噪比(OSNR)均低于其对应的20%前向纠错(FEC)阈值,而且,在较宽的OSNR范围内达到了99.62%的识别准确率;在存在残余色散的光网络中,该方案仍能保持较高的识别性能。 展开更多
关键词 调制格式识别 光通信 幅值密度特征 Mobile ViT 归一化注意力机制
在线阅读 下载PDF
基于门控注意力网络的调制信号分类识别算法
19
作者 许雪 姚文强 +1 位作者 李晨 郭业才 《现代电子技术》 北大核心 2025年第3期69-75,共7页
针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(C... 针对神经网络提取的信号特征不足导致信号识别率下降的问题,提出基于门控注意力网络的调制信号分类识别算法。该算法先对输入信号进行混合数据增强,生成更多维度的样本以便网络更好地提取信号特征;再将处理后的样本信号输入双通道网络(CNN and BiLSTM Parallel),并行提取信号的空间特征和时间特征;最后将提取到的特征输入到门控注意力网络中,自适应地调整特征权重,减少网络复杂度。实验表明,文中提出的算法最高分类准确率为92.3%,优于对比的其他网络模型。 展开更多
关键词 自动调制识别 双通道网络 长短时记忆网络 门控注意力网络 空间特征 时间特征
在线阅读 下载PDF
基于CLR和改进卷积神经网络的调制方式识别算法
20
作者 王晓宇 张邦宁 +1 位作者 杨宁 郭道省 《无线电工程》 2025年第1期67-75,共9页
为提高非合作通信场景中调制方式识别任务在低信噪比(Signal to Noise Ratio,SNR)条件下的识别率及实时性,对卷积神经网络(Convolutional Neural Network,CNN)结构和学习率策略进行了改进,设计了一种基于循环周期学习率(Cyclic Learning... 为提高非合作通信场景中调制方式识别任务在低信噪比(Signal to Noise Ratio,SNR)条件下的识别率及实时性,对卷积神经网络(Convolutional Neural Network,CNN)结构和学习率策略进行了改进,设计了一种基于循环周期学习率(Cyclic Learning Rate,CLR)策略和改进CNN的调制方式识别算法。为了突出信号特征,通过短时傅里叶变换(Short Time Fourier Transform,STFT)生成信号的时频图,引入注意力机制对CNN进行改进,用于抑制信号中的冗余信息,实现特征提取,增强在低SNR条件下算法的识别能力,通过设计CLR策略,对算法超参数进行设置,提高算法的收敛速度。实验结果表明,在-10 dB条件下,识别率可达92%,相较于其他经典算法,识别率得到显著提升,所提出的算法参数量小、计算复杂度低、收敛速度快。 展开更多
关键词 调制方式识别 短时傅里叶变换 卷积神经网络 注意力机制 循环周期学习率策略
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部