期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:6
1
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(IPSO)
在线阅读 下载PDF
Improved Particle Swarm Optimization for Solving Transient Nonlinear Inverse Heat Conduction Problem in Complex Structure 被引量:1
2
作者 ZHOU Ling ZHANG Chunyun +2 位作者 BAI Yushuai LIU Kun CUI Miao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期816-828,共13页
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati... Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified. 展开更多
关键词 improved particle swarm optimization transient nonlinear heat conduction problem inverse identification finite element method complex structure
在线阅读 下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
3
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
在线阅读 下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
4
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
A Novel Tuning Method for Predictive Control of VAV Air Conditioning System Based on Machine Learning and Improved PSO
5
作者 Ning He Kun Xi +1 位作者 Mengrui Zhang Shang Li 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期350-361,共12页
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th... The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system. 展开更多
关键词 model predictive control(MPC) parameter tuning machine learning improved particle swarm optimization(PSO)
在线阅读 下载PDF
Research on Stealth Assistant Decision System of Submarine Voyage Stage 被引量:2
6
作者 Yushan Sun Wenlong Jiao +2 位作者 Guocheng Zhang Lifeng Wang Junhan Cheng 《Journal of Marine Science and Application》 CSCD 2020年第2期208-217,共10页
Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,t... Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,this paper proposes a stealth assistant decision system.Firstly,the submarine stealth posture is acquired.A fuzzy neural network inference engine based on improved simplified particle swarm optimization is designed.The auxiliary decision-making scheme for state control and maneuver avoidance of submarine and its equipment is automatically generated.Secondly,the simulation and deduction of the assistant decision-making scheme are realized by the calculation modules of sound source level,propagation loss,and stealth situation.The assistant decision-making scheme and simulation result provide decision support for the commander.Thirdly,the simulation experiment platform of the submarine stealth assistant decision system is constructed.The submarine stealth assistant decision system described in this paper can quickly and efficiently produce assistant decision-making schemes,including submarine and equipment control and maneuver avoidance.The scheme is in line with the combat experience and the results of the pre-model simulation experiments,whereas the simulation deduction evaluates the rationality and effectiveness of the selected scheme.The submarine stealth assistant decision system can adapt to a complex battlefield environment in addition to rapidly and accurately providing assistance in decision-making. 展开更多
关键词 SUBMARINE Dynamic stealth Assistant decision Fuzzy neural network improved simplified particle swarm optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部