The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati...The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.展开更多
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ...Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-d...The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.展开更多
Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels b...Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.展开更多
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Struct...Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.展开更多
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa...In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.展开更多
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli...Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless ste...Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed.The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines.It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis.The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.展开更多
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were...The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.展开更多
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o...Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.展开更多
The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiody...The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiodynamic polarization, weight loss, and SEM/EDX at room temperature. The experimental data explained the effective performance of ES with values of 57%-100% inhibition efficiency, at 2 g-10 g inhibitor concentration from weight loss tests due to the inhibition of stainless steel. The electrochemical action was as a result of the ionized particles which inhibit the compound influencing the redox reaction mechanism causing surface corrosion. ES's best performance was achieved when 6 g of the inhibitor concentration was added to the saline medium. Corrosion rate value decreased progressively with the presence of inhibitor because of anions adsorption at the interface of the metal film. Corrosion potential(Ecorr) value was found to decrease from-0.3991 V to-0.3447 V in the presence of inhibitor at 2 g concentration, decreasing gradually to-0.2048 at 6 g inhibitor concentration. The compounds identified in the ES completely adsorbed onto the surface of stainless steel as observed from the EDX analysis. The ES adsorption on stainless steel surface obeyed Langmuir adsorption isotherm. A corroded morphology with pits was observed in the SEM results without ES which contrast the images obtained with the presence of ES.展开更多
Radiological properties, such as the linear attenuation coefficient(μ), mass attenuation coefficient(μ/ρ), half-value layer(HVL), tenth-value layer(TVL), mean free path(MFP), and effective atomic number(Z_(eff)), o...Radiological properties, such as the linear attenuation coefficient(μ), mass attenuation coefficient(μ/ρ), half-value layer(HVL), tenth-value layer(TVL), mean free path(MFP), and effective atomic number(Z_(eff)), of 304 L stainless steels have been investigated with respect to photon interactions to determine the influence of current intensity at different gamma-ray energies.^(137)Cs and ^(60)Co radioactive point sources were used to irradiate 304 L stainless steels joined at 45–70-A weld currents for the transmission of the gamma rays at photon energies of661.0, 1173.2, and 1332.5 ke V. The μ, μ/ρ, HVL, TVL,MFP, and Z_(eff) of the steels were measured at the mentioned energies, and theoretical values for pure 304 L stainless steel were calculated for comparison. The minimum differences(%) in Z_(eff) between pure steel and steel joined at a weld current of 60 A were observed for relevant photon energies; the minimum difference between the theoretical value for pure 304 L and the experimental value for joined steel was 4.76%, and that between the experimental value for pure 304 L and the experimental value for joined steel was 2.60% at 1332.5 ke V. Moreover, the MFPs of the joined steels were compared with that of pure 304 L, and steel joined at 60 A, which had the minimum MFP, was compared with some radiation-shielding concretes in terms of MFP at the same gamma-ray energies.展开更多
The deformation process of the microstructure in 2205 duplex stainless steel(DSS)under thermo-mechanical coupling at 250℃was investigated using digital image correlation(DIC).A thermal tension test of duplex stainles...The deformation process of the microstructure in 2205 duplex stainless steel(DSS)under thermo-mechanical coupling at 250℃was investigated using digital image correlation(DIC).A thermal tension test of duplex stainless steel(2205DSS)with a banded structure was carded out to observe the initial deformation of the microstructure.It was found that inhomogeneous strain fields occurred primarily in austenite.The maximum normal strain in austenite was almost pos-itive,while that in ferrite was almost negative.In addition,a thermal cyclic-loading test was conducted,and the strain field was characterized by e11.Strain heterogeneities were induced after 400 cycles,which spread within the austenite and at the phase boundaries with the load increasing.The high tensile-strain regions were always located adjacent to regions of intense compressive strain.Based on the strain matrix sum vs.cycle number,we found that hardening occurred in the early cycles followed by softening.展开更多
In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigate...In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigated in the temperatures range of 200C–650C.It was found that with increasing annealing temperature the volume fraction of theα0-martensite first increased to reach a maximum value at 400C,then the volume fraction decreased with further increases of the annealing temperature.The yield strength was increased from 1400 MPa to 1720 MPa after annealing;this strong hardening effect in cold rolled 316 L stainless steel was mainly attributed to the increase of the volume fraction ofα0-martensite.展开更多
The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure...The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.展开更多
In this paper, by using an ingenious method, the hydrogen isotope solubilities and diffusivities in GWHER-1 stainless steel have been determined by a vacuum heating degassing approach at the temperature range of 597-1...In this paper, by using an ingenious method, the hydrogen isotope solubilities and diffusivities in GWHER-1 stainless steel have been determined by a vacuum heating degassing approach at the temperature range of 597-1022 K on a set of specimens with different sizes previously charged for 24 h under a hydrogen isotope pressure of 105 Pa in the temperature range of 800-1000 K. The permeabilities are then derived from the relation Φ = DKs. It is found D = 1.52 ×10^-6exp(-54100/RT), Ks = 2.2×10^-exp(-5400/RT) and Φ = 3.3 ×10^-12exp(-59500/RT) for hydrogen, where Ks (Sieverts' constant) is given in Pa^-1/2, D in m2.s^-1.Pa^-1/2, T in K and R=8.31 J.mol^-1.K^-1. By taking isotope effects into account, the corresponding Arrhenius relations for deuterium and tritium are also deduced.展开更多
文摘The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.
基金financially supported by the National Basic Research Program of China (973 Program) (no. 2012CB215500)the National Key Technology Research and Development Program of China (no. 2015BAG06B00)+1 种基金Major Program of the National Natural Science Foundation of China (no. 61433013)National Natural Science Foundation of China (no. 21206012)
文摘Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.
文摘The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.
文摘Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
基金Project supported by the National Natural Science Foundation of China(Grant No.51371123)the Specialized Research Foundation of the Doctoral Program for Institution of Higher Education of China(Grant No.2013140211003)+1 种基金the Science and Technology Research Project of Municipal Education Commission of Chongqin,China(Grant Nos.KJ131308 and KJ131315)the Natural Science Foundation of Science and Technology Commission of Chongqin,China(Grant No.cstc2012jjA90017)
文摘Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.
文摘In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.51371089 and 51201068)the National Key Basic Research and Development Program of China (Grant No.2010CB631001)
文摘Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
基金supported by the R&D Center for Valuable Recycling(Global-Top R&BD Program)of the Ministry of Environment.(Project No.2016002250003)partially supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0008763,The Competency Development Program for Industry Specialist)。
文摘Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed.The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines.It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis.The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
基金Project 50535050 supported by National Natural Science Foundation of China
文摘The microstructure and nano-tribological properties of 316 austenitic stainless steel have been investigated by using the in situ nano-mechanical testing system Tribolndenter, in which six different normal forces were chosen to make a scratch and indentation. The results show that the contact depth of the indentation increases with the normal force and material is piled up on the edge of the indentation as plastic distortion. The stable nano-hardness and the reduced modulus of 316 austenitic stainless steel are approximately 6 GPa and 160 GPa, respectively. The friction coefficients of 316 stainless steel with conic-type diamond tip have a typical value of about 0.13, 0.15, 0.17, 0.19, 0.22 and 0.25 when the normal forces are kept at 500 μN, 1000 μN, 1500 μN, 2000 μN, 2500 μN and 3000 μN, revealing an increasing trend with the normal forces. The increase of the friction coefficient in the unloading segment may result from the adhesion force caused by the material piled up.
基金supported by the Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)+1 种基金Industrial Project of Public Technology Research of Zhejiang Province Science and Technology Department(LGG18E040001)Scientific Research Project of Zhejiang Province Education Department(Y20173854)
文摘Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions.
文摘The effect of egg shell powder(ES) as an environmental friendly inhibitor was studied for its corrosion inhibitive tendency on N08904 austenitic stainless steel in simulated saline(3.5% NaCl) solution using potentiodynamic polarization, weight loss, and SEM/EDX at room temperature. The experimental data explained the effective performance of ES with values of 57%-100% inhibition efficiency, at 2 g-10 g inhibitor concentration from weight loss tests due to the inhibition of stainless steel. The electrochemical action was as a result of the ionized particles which inhibit the compound influencing the redox reaction mechanism causing surface corrosion. ES's best performance was achieved when 6 g of the inhibitor concentration was added to the saline medium. Corrosion rate value decreased progressively with the presence of inhibitor because of anions adsorption at the interface of the metal film. Corrosion potential(Ecorr) value was found to decrease from-0.3991 V to-0.3447 V in the presence of inhibitor at 2 g concentration, decreasing gradually to-0.2048 at 6 g inhibitor concentration. The compounds identified in the ES completely adsorbed onto the surface of stainless steel as observed from the EDX analysis. The ES adsorption on stainless steel surface obeyed Langmuir adsorption isotherm. A corroded morphology with pits was observed in the SEM results without ES which contrast the images obtained with the presence of ES.
基金supported by the Yalova University Scientific Research Foundation(No.2013-062)
文摘Radiological properties, such as the linear attenuation coefficient(μ), mass attenuation coefficient(μ/ρ), half-value layer(HVL), tenth-value layer(TVL), mean free path(MFP), and effective atomic number(Z_(eff)), of 304 L stainless steels have been investigated with respect to photon interactions to determine the influence of current intensity at different gamma-ray energies.^(137)Cs and ^(60)Co radioactive point sources were used to irradiate 304 L stainless steels joined at 45–70-A weld currents for the transmission of the gamma rays at photon energies of661.0, 1173.2, and 1332.5 ke V. The μ, μ/ρ, HVL, TVL,MFP, and Z_(eff) of the steels were measured at the mentioned energies, and theoretical values for pure 304 L stainless steel were calculated for comparison. The minimum differences(%) in Z_(eff) between pure steel and steel joined at a weld current of 60 A were observed for relevant photon energies; the minimum difference between the theoretical value for pure 304 L and the experimental value for joined steel was 4.76%, and that between the experimental value for pure 304 L and the experimental value for joined steel was 2.60% at 1332.5 ke V. Moreover, the MFPs of the joined steels were compared with that of pure 304 L, and steel joined at 60 A, which had the minimum MFP, was compared with some radiation-shielding concretes in terms of MFP at the same gamma-ray energies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472187 and 11602166)the National Basic Research Program of China(Grant No.2014CB046805)the Natural Science Foundation of Tianjin,China(Grant No.16JCYBJC40500)
文摘The deformation process of the microstructure in 2205 duplex stainless steel(DSS)under thermo-mechanical coupling at 250℃was investigated using digital image correlation(DIC).A thermal tension test of duplex stainless steel(2205DSS)with a banded structure was carded out to observe the initial deformation of the microstructure.It was found that inhomogeneous strain fields occurred primarily in austenite.The maximum normal strain in austenite was almost pos-itive,while that in ferrite was almost negative.In addition,a thermal cyclic-loading test was conducted,and the strain field was characterized by e11.Strain heterogeneities were induced after 400 cycles,which spread within the austenite and at the phase boundaries with the load increasing.The high tensile-strain regions were always located adjacent to regions of intense compressive strain.Based on the strain matrix sum vs.cycle number,we found that hardening occurred in the early cycles followed by softening.
基金supported by the National Key R&D Program of China(2017YFA0204403)Natural Science Foundation of Jiangsu Province(BK20191292)+1 种基金the Fundamental Research Funds for the Central Universities(30919011256)the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.
文摘In this work,coarse-grained 316 L stainless steels were cold rolled with a thickness reduction of^83%(CR 83%).After annealing,the behaviors of the nanostructured stainless steel samples were systematically investigated in the temperatures range of 200C–650C.It was found that with increasing annealing temperature the volume fraction of theα0-martensite first increased to reach a maximum value at 400C,then the volume fraction decreased with further increases of the annealing temperature.The yield strength was increased from 1400 MPa to 1720 MPa after annealing;this strong hardening effect in cold rolled 316 L stainless steel was mainly attributed to the increase of the volume fraction ofα0-martensite.
基金supported by the National Science Foundation of Shanghai(No.22ZR1474600)the National Natural Science Foundation of China(No.12175302)+1 种基金the“Thorium Molten Salt Reactor Nuclear Energy System”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 02040000)the“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21000000)。
文摘The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275017).
文摘In this paper, by using an ingenious method, the hydrogen isotope solubilities and diffusivities in GWHER-1 stainless steel have been determined by a vacuum heating degassing approach at the temperature range of 597-1022 K on a set of specimens with different sizes previously charged for 24 h under a hydrogen isotope pressure of 105 Pa in the temperature range of 800-1000 K. The permeabilities are then derived from the relation Φ = DKs. It is found D = 1.52 ×10^-6exp(-54100/RT), Ks = 2.2×10^-exp(-5400/RT) and Φ = 3.3 ×10^-12exp(-59500/RT) for hydrogen, where Ks (Sieverts' constant) is given in Pa^-1/2, D in m2.s^-1.Pa^-1/2, T in K and R=8.31 J.mol^-1.K^-1. By taking isotope effects into account, the corresponding Arrhenius relations for deuterium and tritium are also deduced.