摘要
In this paper, by using an ingenious method, the hydrogen isotope solubilities and diffusivities in GWHER-1 stainless steel have been determined by a vacuum heating degassing approach at the temperature range of 597-1022 K on a set of specimens with different sizes previously charged for 24 h under a hydrogen isotope pressure of 105 Pa in the temperature range of 800-1000 K. The permeabilities are then derived from the relation Φ = DKs. It is found D = 1.52 ×10^-6exp(-54100/RT), Ks = 2.2×10^-exp(-5400/RT) and Φ = 3.3 ×10^-12exp(-59500/RT) for hydrogen, where Ks (Sieverts' constant) is given in Pa^-1/2, D in m2.s^-1.Pa^-1/2, T in K and R=8.31 J.mol^-1.K^-1. By taking isotope effects into account, the corresponding Arrhenius relations for deuterium and tritium are also deduced.
In this paper, by using an ingenious method, the hydrogen isotope solubilities and diffusivities in GWHER-1 stainless steel have been determined by a vacuum heating degassing approach at the temperature range of 597-1022 K on a set of specimens with different sizes previously charged for 24 h under a hydrogen isotope pressure of 105 Pa in the temperature range of 800-1000 K. The permeabilities are then derived from the relation Φ = DKs. It is found D = 1.52 ×10^-6exp(-54100/RT), Ks = 2.2×10^-exp(-5400/RT) and Φ = 3.3 ×10^-12exp(-59500/RT) for hydrogen, where Ks (Sieverts' constant) is given in Pa^-1/2, D in m2.s^-1.Pa^-1/2, T in K and R=8.31 J.mol^-1.K^-1. By taking isotope effects into account, the corresponding Arrhenius relations for deuterium and tritium are also deduced.
基金
Project supported by the National Natural Science Foundation of China (Grant No 10275017).
作者简介
E-mail: chenz@swip.ac.cn