Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie...Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.展开更多
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r....Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.展开更多
针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分...针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分配给拣货台、订单在拣货台的处理顺序及如何安排货架的访问顺序进行集成优化决策,并以最小化订单拣选时间为目标建立混合整数规划模型.设计变邻域搜索算法(the Variable Neighborhood Search Algorithm,VNSA),通过订单相似度进行分批分配并生成贪婪初始解,结合货架置换、订单重分配的抖动算子和订单交换/插入、货架序列调整等4种局部优化邻域,采用动态切换机制实现迭代寻优,并将设计的算法与CPLEX求解器进行比较.研究结果表明:VNSA算法在小规模算例中求解速度与精度优于CPLEX求解器;在大规模算例中对初始解的优化能力显著,验证了联合优化订单分配和排序的有效性;订单拣选时间与拣货台数量、容量呈负相关,与负载平衡系数呈正相关.展开更多
International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between a...International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.展开更多
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.
文摘Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.
基金supported by the National Natural Science Foundation of Chinathe Civil Aviation Administration of China (U2333206).
文摘International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.