Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie...Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.展开更多
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r....Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.展开更多
针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分...针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分配给拣货台、订单在拣货台的处理顺序及如何安排货架的访问顺序进行集成优化决策,并以最小化订单拣选时间为目标建立混合整数规划模型.设计变邻域搜索算法(the Variable Neighborhood Search Algorithm,VNSA),通过订单相似度进行分批分配并生成贪婪初始解,结合货架置换、订单重分配的抖动算子和订单交换/插入、货架序列调整等4种局部优化邻域,采用动态切换机制实现迭代寻优,并将设计的算法与CPLEX求解器进行比较.研究结果表明:VNSA算法在小规模算例中求解速度与精度优于CPLEX求解器;在大规模算例中对初始解的优化能力显著,验证了联合优化订单分配和排序的有效性;订单拣选时间与拣货台数量、容量呈负相关,与负载平衡系数呈正相关.展开更多
大型复杂机电设备在航空航天、遥感测绘和智能制造行业的应用越来越广。针对复杂机电设备在仓储和运输过程中的状态信息实时测量问题,特别是测量过程中的复杂测量任务调度难题,提出了一种基于改进麻雀搜索算法(improving the sparrow se...大型复杂机电设备在航空航天、遥感测绘和智能制造行业的应用越来越广。针对复杂机电设备在仓储和运输过程中的状态信息实时测量问题,特别是测量过程中的复杂测量任务调度难题,提出了一种基于改进麻雀搜索算法(improving the sparrow search algorithm,ISSA)的复杂测量任务实时调度方法。该方法首先通过tent混沌映射并结合反向学习初始化麻雀种群,提升算法初始解质量;随后引入灰狼优化算法信息交换机制改进发现者搜索策略,提升算法全局搜索能力;最后将正余弦机制与跟随者位置更新相结合,并在迭代完成后对发现者个体进行变邻域搜索,提高调度算法收敛速度,防止算法陷入局部最优。为验证调度方法的综合调度性能,对其进行了大量对比实验分析。实验结果表明,该方法将系统调度算法的计算时间缩减了14.3%,最大完成时间也较传统方法优化了46.6%,充分验证了其在复杂测量任务调度中的有效性和稳定性。展开更多
针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and im...针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。展开更多
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.
文摘Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA.
文摘大型复杂机电设备在航空航天、遥感测绘和智能制造行业的应用越来越广。针对复杂机电设备在仓储和运输过程中的状态信息实时测量问题,特别是测量过程中的复杂测量任务调度难题,提出了一种基于改进麻雀搜索算法(improving the sparrow search algorithm,ISSA)的复杂测量任务实时调度方法。该方法首先通过tent混沌映射并结合反向学习初始化麻雀种群,提升算法初始解质量;随后引入灰狼优化算法信息交换机制改进发现者搜索策略,提升算法全局搜索能力;最后将正余弦机制与跟随者位置更新相结合,并在迭代完成后对发现者个体进行变邻域搜索,提高调度算法收敛速度,防止算法陷入局部最优。为验证调度方法的综合调度性能,对其进行了大量对比实验分析。实验结果表明,该方法将系统调度算法的计算时间缩减了14.3%,最大完成时间也较传统方法优化了46.6%,充分验证了其在复杂测量任务调度中的有效性和稳定性。
文摘针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。