The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法...针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法基于概率模型通过采样产生新个体,并基于优势种群更新概率模型的参数.同时,通过实验设计方法对算法参数设置进行了分析并确定了有效的参数组合.最后,通过基于实例的数值仿真以及与已有算法的比较验证了所提算法的有效性和鲁棒性.展开更多
在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过...在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.展开更多
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
文摘针对混合流水车间调度问题(Hybrid flow-shop scheduling problem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimation of distribution algorithm,EDA).该算法基于概率模型通过采样产生新个体,并基于优势种群更新概率模型的参数.同时,通过实验设计方法对算法参数设置进行了分析并确定了有效的参数组合.最后,通过基于实例的数值仿真以及与已有算法的比较验证了所提算法的有效性和鲁棒性.
文摘在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.