页岩扫描电镜(scanning electron microscope,SEM)图像智能识别能够快速分析页岩储层矿物,是页岩油储层“甜点”预测的重要手段之一,也是未来的技术发展趋势。传统方法在鉴定矿物成分时存在自动化程度低、样本适配度低和特征提取受限等...页岩扫描电镜(scanning electron microscope,SEM)图像智能识别能够快速分析页岩储层矿物,是页岩油储层“甜点”预测的重要手段之一,也是未来的技术发展趋势。传统方法在鉴定矿物成分时存在自动化程度低、样本适配度低和特征提取受限等问题。为此,本文提出基于BlendMask的页岩SEM图像鉴定方法。首先,采用双边滤波、拉普拉斯和图像归一化等图像预处理技术对原始图像进行去噪、锐化和像素统一处理,提高训练样本的质量;然后,采用旋转、缩放、光度变化等图像增广方法构建增广策略,扩大数据集数量;最后,利用注意力机制和深度可分离卷积改进BlendMask网络,实现图像的成分分割与识别。应用于海塔盆地的页岩SEM图像实验结果表明,相比BlendMask模型,改进后方法的分割准确率和召回率分别提升了0.02~0.20和0~0.59,分割用时减少了1.29~2.70 s。展开更多
扫描电子显微镜(scanning electron microscope,SEM)在材料表征领域具有广泛的应用前景,然而所获得的图像通常难以直接提取定量信息。针对一种共晶高熵合金的扫描电镜图像,提出了一种基于机器学习和图像分割技术的自动化、定量化分析方...扫描电子显微镜(scanning electron microscope,SEM)在材料表征领域具有广泛的应用前景,然而所获得的图像通常难以直接提取定量信息。针对一种共晶高熵合金的扫描电镜图像,提出了一种基于机器学习和图像分割技术的自动化、定量化分析方法,该方法能够有效测量共晶高熵合金板条状区域的面积、长度、宽度、周长以及不同组分的占比。实验结果表明,本研究所提出的方法在高熵合金图像上具有良好的鲁棒性和准确性,为研究高熵合金材料的表面结构提供了重要的技术支持。展开更多
文摘页岩扫描电镜(scanning electron microscope,SEM)图像智能识别能够快速分析页岩储层矿物,是页岩油储层“甜点”预测的重要手段之一,也是未来的技术发展趋势。传统方法在鉴定矿物成分时存在自动化程度低、样本适配度低和特征提取受限等问题。为此,本文提出基于BlendMask的页岩SEM图像鉴定方法。首先,采用双边滤波、拉普拉斯和图像归一化等图像预处理技术对原始图像进行去噪、锐化和像素统一处理,提高训练样本的质量;然后,采用旋转、缩放、光度变化等图像增广方法构建增广策略,扩大数据集数量;最后,利用注意力机制和深度可分离卷积改进BlendMask网络,实现图像的成分分割与识别。应用于海塔盆地的页岩SEM图像实验结果表明,相比BlendMask模型,改进后方法的分割准确率和召回率分别提升了0.02~0.20和0~0.59,分割用时减少了1.29~2.70 s。
文摘扫描电子显微镜(scanning electron microscope,SEM)在材料表征领域具有广泛的应用前景,然而所获得的图像通常难以直接提取定量信息。针对一种共晶高熵合金的扫描电镜图像,提出了一种基于机器学习和图像分割技术的自动化、定量化分析方法,该方法能够有效测量共晶高熵合金板条状区域的面积、长度、宽度、周长以及不同组分的占比。实验结果表明,本研究所提出的方法在高熵合金图像上具有良好的鲁棒性和准确性,为研究高熵合金材料的表面结构提供了重要的技术支持。