为提升功率密度,高速化、多极化已成为高性能永磁同步电机的重要发展方向,但也使永磁同步电机的高频化特性愈加明显,高频交流铜耗问题也愈加突出。由成型利兹线制成的定子绕组嵌线可有效抑制集肤效应、临近效应和环流效应带来的交流损耗...为提升功率密度,高速化、多极化已成为高性能永磁同步电机的重要发展方向,但也使永磁同步电机的高频化特性愈加明显,高频交流铜耗问题也愈加突出。由成型利兹线制成的定子绕组嵌线可有效抑制集肤效应、临近效应和环流效应带来的交流损耗,在高性能永磁电机领域具有良好的应用前景。有限元法可实现成型利兹线绕组高频铜耗的准确计算,但利兹线建模复杂,计算成本高。该文提出一种将Torukhani模型与等效磁网络法相结合的定子槽内成型利兹线绕组高频铜耗解析计算方法,其在传统Torukhani模型的基础上,基于等效磁网络法计算磁饱和修正系数,对定子槽内漏磁场进行修正,弥补了传统Torukhani模型无法考虑铁心磁饱和影响的不足。与有限元方法对比表明,该方法可实现0~30 k Hz范围内成型利兹线绕组高频铜耗的高效计算,计算精度可满足工程需求,并通过定子槽内成型利兹线绕组的交流电阻系数测量试验,验证方法合理性与正确性。该方法可为永磁同步电机损耗与温度场的精确分析提供参考与借鉴。展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
为了研究高压输电系统电力变压器铜屏蔽中涡流损耗的分布,基于TEAM Problem 21基准族中的P21c-EM1简化模型进行了详细的实验研究与仿真分析。采用不同的建模方法对多种工况下激励线圈欧姆损耗进行计算并与测量值对比,得出线圈整体建模...为了研究高压输电系统电力变压器铜屏蔽中涡流损耗的分布,基于TEAM Problem 21基准族中的P21c-EM1简化模型进行了详细的实验研究与仿真分析。采用不同的建模方法对多种工况下激励线圈欧姆损耗进行计算并与测量值对比,得出线圈整体建模无法计算漏磁通在导体本身产生的涡流损耗,线圈单匝建模可以很好地反应实际工况。系统地介绍了变压器结构件杂散损耗传统测量方法以及分析了其缺陷,基于传统的测量方法介绍了一种新的测量方法,即采用实验模型总的损耗测量值减去实验模型中激励线圈损耗的精确计算值得出结构件中的损耗。多种激励条件下铜屏蔽中涡流损耗的计算值与测量值具有较好的一致性,从而验证了该方法的有效性。所得的结果、结论有助于电力变压器、平波电抗器等装置屏蔽结构的优化设计。展开更多
文摘为提升功率密度,高速化、多极化已成为高性能永磁同步电机的重要发展方向,但也使永磁同步电机的高频化特性愈加明显,高频交流铜耗问题也愈加突出。由成型利兹线制成的定子绕组嵌线可有效抑制集肤效应、临近效应和环流效应带来的交流损耗,在高性能永磁电机领域具有良好的应用前景。有限元法可实现成型利兹线绕组高频铜耗的准确计算,但利兹线建模复杂,计算成本高。该文提出一种将Torukhani模型与等效磁网络法相结合的定子槽内成型利兹线绕组高频铜耗解析计算方法,其在传统Torukhani模型的基础上,基于等效磁网络法计算磁饱和修正系数,对定子槽内漏磁场进行修正,弥补了传统Torukhani模型无法考虑铁心磁饱和影响的不足。与有限元方法对比表明,该方法可实现0~30 k Hz范围内成型利兹线绕组高频铜耗的高效计算,计算精度可满足工程需求,并通过定子槽内成型利兹线绕组的交流电阻系数测量试验,验证方法合理性与正确性。该方法可为永磁同步电机损耗与温度场的精确分析提供参考与借鉴。
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘为了研究高压输电系统电力变压器铜屏蔽中涡流损耗的分布,基于TEAM Problem 21基准族中的P21c-EM1简化模型进行了详细的实验研究与仿真分析。采用不同的建模方法对多种工况下激励线圈欧姆损耗进行计算并与测量值对比,得出线圈整体建模无法计算漏磁通在导体本身产生的涡流损耗,线圈单匝建模可以很好地反应实际工况。系统地介绍了变压器结构件杂散损耗传统测量方法以及分析了其缺陷,基于传统的测量方法介绍了一种新的测量方法,即采用实验模型总的损耗测量值减去实验模型中激励线圈损耗的精确计算值得出结构件中的损耗。多种激励条件下铜屏蔽中涡流损耗的计算值与测量值具有较好的一致性,从而验证了该方法的有效性。所得的结果、结论有助于电力变压器、平波电抗器等装置屏蔽结构的优化设计。