A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that th...A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.展开更多
Ongoing research is described that is focused upon modelling the space base information network and simulating its behaviours: simulation of spaced based communications and networking project. Its objective is to dem...Ongoing research is described that is focused upon modelling the space base information network and simulating its behaviours: simulation of spaced based communications and networking project. Its objective is to demonstrate the feasibility of producing a tool that can provide a performance evaluation of various eonstellation access techniques and routing policies. The architecture and design of the simulation system are explored. The algorithm of data routing and instrument scheduling in this project is described. Besides these, the key methodologies of simulating the inter-satellite link features in the data transmissions are also discussed. The performance of both instrument scheduling algorithm and routing schemes is evaluated and analyzed through extensive simulations under a typical scenario.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was trans...The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was transformed into a non-constrained optimization problem using mass conservation. Then,through one dimensional optimization and scale matrix establishment,the feasible direction of iteration was obtained,and the values of state variables could be calculated. After several iterations,the optimal estimates of state variables were worked out and state simulation of water distribution networks was achieved as a result. A program of DFP algorithm is developed with Delphi 7 for verification. By running on a designed network,which is composed of 55 nodes,94 pipes and 40 loops,it is proved that DFP algorithm can quickly get the convergence. After 36 iterations,the root mean square of all nodal head errors is reduced by 90.84% from 5.57 to 0.51 m,and the maximum error is only 1.30 m. Compared to Marquardt algorithm,the procedure of DFP algorithm is more stable,and the initial values have less influences on calculation accuracy. Therefore,DFP algorithm can be used for real-time simulation of water distribution networks.展开更多
Aiming at the applications of NOC (network on chip) technology in rising scale and complexity on chip systems, a Torus structure and corresponding route algorithm for NOC is proposed. This Torus structure improves t...Aiming at the applications of NOC (network on chip) technology in rising scale and complexity on chip systems, a Torus structure and corresponding route algorithm for NOC is proposed. This Torus structure improves traditional Torus topology and redefines the denotations of the routers. Through redefining the router denotations and changing the original router locations, the Torus structure for NOC application is reconstructed. On the basis of this structure, a dead-lock and live-lock free route algorithm is designed according to dimension increase. System C is used to implement this structure and the route algorithm is simulated. In the four different traffic patterns, average, hotspot 13%, hotspot 67% and transpose, the average delay and normalization throughput of this Torus structure are evaluated. Then, the performance of delay and throughput between this Torus and Mesh structure is compared. The results indicate that this Torus structure is more suitable for NOC applications.展开更多
Simulating large-scale and complex systems is commonly considered a difficult and time-consuming task. In this paper, we propose a partial simulation way to speed up the simulation with real time demands. It is based ...Simulating large-scale and complex systems is commonly considered a difficult and time-consuming task. In this paper, we propose a partial simulation way to speed up the simulation with real time demands. It is based on the idea that a train traffic diagram is expressed in a network, and through calculating the maximal long path in the network the simulation is done, but only within a particular partial area.Upon this, we let it become a problem oriented simulation. The simulation could be started at any time,from any trains or at any stations and stopped as the same way according to the problem to be concerned.We can use this kind of simulation to analyse or confirm the correctness of traffic schedule at a high speed to meet the real time demands.展开更多
Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first ...Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.展开更多
Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precis...Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.展开更多
Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we em...Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.展开更多
This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is va...This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.展开更多
基金Project(51008229)supported by the National Natural Science Foundation of ChinaProject supported by Key Laboratory of Road and Traffic Engineering of Tongji University,China
文摘A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.
基金This project was supported by the National "863" High-Tech Research and Development Program of China(2002AA7170)
文摘Ongoing research is described that is focused upon modelling the space base information network and simulating its behaviours: simulation of spaced based communications and networking project. Its objective is to demonstrate the feasibility of producing a tool that can provide a performance evaluation of various eonstellation access techniques and routing policies. The architecture and design of the simulation system are explored. The algorithm of data routing and instrument scheduling in this project is described. Besides these, the key methodologies of simulating the inter-satellite link features in the data transmissions are also discussed. The performance of both instrument scheduling algorithm and routing schemes is evaluated and analyzed through extensive simulations under a typical scenario.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金Project(IRT0853) supported by Changjiang Scholars and Innovative Research Team in UniversityProject(DB03086) supported by Talents Fund of Xi’an University of Architecture and TechnologyProject(50978213) supported by National Natural Science Foundation
文摘The improved weighted-least-square model was used for state simulation of water distribution networks. And DFP algorithm was applied to get the model solution. In order to fit DFP algorithm,the initial model was transformed into a non-constrained optimization problem using mass conservation. Then,through one dimensional optimization and scale matrix establishment,the feasible direction of iteration was obtained,and the values of state variables could be calculated. After several iterations,the optimal estimates of state variables were worked out and state simulation of water distribution networks was achieved as a result. A program of DFP algorithm is developed with Delphi 7 for verification. By running on a designed network,which is composed of 55 nodes,94 pipes and 40 loops,it is proved that DFP algorithm can quickly get the convergence. After 36 iterations,the root mean square of all nodal head errors is reduced by 90.84% from 5.57 to 0.51 m,and the maximum error is only 1.30 m. Compared to Marquardt algorithm,the procedure of DFP algorithm is more stable,and the initial values have less influences on calculation accuracy. Therefore,DFP algorithm can be used for real-time simulation of water distribution networks.
基金the National Natural Science Fundation of China (60575031).
文摘Aiming at the applications of NOC (network on chip) technology in rising scale and complexity on chip systems, a Torus structure and corresponding route algorithm for NOC is proposed. This Torus structure improves traditional Torus topology and redefines the denotations of the routers. Through redefining the router denotations and changing the original router locations, the Torus structure for NOC application is reconstructed. On the basis of this structure, a dead-lock and live-lock free route algorithm is designed according to dimension increase. System C is used to implement this structure and the route algorithm is simulated. In the four different traffic patterns, average, hotspot 13%, hotspot 67% and transpose, the average delay and normalization throughput of this Torus structure are evaluated. Then, the performance of delay and throughput between this Torus and Mesh structure is compared. The results indicate that this Torus structure is more suitable for NOC applications.
文摘Simulating large-scale and complex systems is commonly considered a difficult and time-consuming task. In this paper, we propose a partial simulation way to speed up the simulation with real time demands. It is based on the idea that a train traffic diagram is expressed in a network, and through calculating the maximal long path in the network the simulation is done, but only within a particular partial area.Upon this, we let it become a problem oriented simulation. The simulation could be started at any time,from any trains or at any stations and stopped as the same way according to the problem to be concerned.We can use this kind of simulation to analyse or confirm the correctness of traffic schedule at a high speed to meet the real time demands.
文摘Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
基金Supported in part by National Basic Research Program of P. R. China(2005CB321604) in part by National Natural Science Foundation of P. R. China (90207002)
文摘Time synchronization is a critical middleware service of wireless sensor networks. Researchers have already proposed some time synchronization algorithms. However, due to the demands for various synchronization precision, existing time synchronization algorithms often need to be adapted. So it is necessary to evaluate these adapted algorithms before use. Software simulation is a valid and quick way to do it. In this paper, we present a time synchronization simulator, Simsync, for wireless sensor networks. We decompose the packet delay into 6 delay components and model them separately. The frequency of crystal oscillator is modeled as Gaussian. To testify its effectiveness, we simulate the reference broadcast synchronization algorithm (RBS) and the timing-sync synchronization algorithm (TPSN) on Simsync. Simulated results are also presented and analyzed.
文摘Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.
基金Supported by National Natural Science Foundation of P. R. China (60273028)
文摘This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.