针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决...针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。展开更多
近年来,随着我国煤矿业的快速发展,智能化技术的运用越来越广泛。其中,露天煤矿环境的精确定位导航技术研发显得尤为重要。同步定位和地图构建(Simultaneous Localization and Mapping,SLAM)作为无人驾驶的关键技术,在露天煤矿中的应用...近年来,随着我国煤矿业的快速发展,智能化技术的运用越来越广泛。其中,露天煤矿环境的精确定位导航技术研发显得尤为重要。同步定位和地图构建(Simultaneous Localization and Mapping,SLAM)作为无人驾驶的关键技术,在露天煤矿中的应用面临诸多挑战。由于露天煤矿道路周围环境特征点较少,且环境退化严重,SLAM技术需要根据稀疏的特征点进行定位和地图构建,难度较大。此外,由于斜坡和道路不平,传感器易产生抖动,导致机器人运行时的运动畸变问题。针对这些问题,文中提出了一种新的解决方案。首先,对传感器外部参数进行重新标定,采用惯导和激光雷达融合的方式,以增强数据的一致性和准确性。在此基础上,采用全特征点匹配方式,直接对激光雷达采集的数据进行点云降采样提取。通过在算法前端对预处理后的激光点云数据添加迭代最近点(Iterative Closest Point,ICP)匹配提取出关键帧点云X,再结合惯导数据对点云信息进行畸变校正形成点云P,再次通过迭代最近点配准X和P。此外,后端采用因子图加入了回环检测提高约束的方法,进一步提高算法在露天煤矿环境下的定位精度和建图效果。试验结果表明,文中所提算法具有较高的定位精度和完整的建图效果,未产生明显的畸变。侧壁纹理清晰,具有一定的鲁棒性,有效提高了在露天煤矿环境下的鲁棒性和精度。展开更多
文摘针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。