We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispe...We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.展开更多
Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of develop...Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.展开更多
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso...We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.展开更多
The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizin...The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.展开更多
In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the s...In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the structure, morphology and stress of the film are studied. We find that chromium could diffuse to the surface of the film by formatting a solid solution with gold during annealing. Meanwhile, chromium is oxidized on the surface and diffused downward along the grain grooves in the gold film. The various operant mechanisms that change the residual stresses of gold films for different annealing times are discussed.展开更多
Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes ar...Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes are investigated numerically. Surface plasmon polaritons are excited on the metal-dielectric interface, with particular emphasis on the crucial role in tailoring the optical force acting on a nearby nanoparticle. Utilizing a first order corrected electromagnetic field components for a fundamental Gaussian beam, the incident beam is added into the calculation model of the proposed method. To obtain the detailed trapping properties of nanoparticle, the selected calculations on the effects of beam waist radius, sizes of nanoparticle and circular holes, distance between incident Gaussian beam and gold film, material of nanoparticle and polarization angles of incident wave are analyzed in detail to demonstrate that the optical-trapping force can be explained as a virtual spring which has a restoring force to perform positive and negative forces as a nanoparticle moves closer to or away from the centers of circular holes. The results of optical trapping properties of nanoparticle in the vicinity of the gold film could provide guidelines for further research on the optical system design and manipulation of arbitrary composite nanoparticles.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61177079)the Open Fund of Key Laboratory of Electronics Engineering,College of Heilongjiang Province,China (Grant No. DZZD20100014)the Youth Science Foundation of Heilongjiang University,China (Grant No. QL200914)
文摘We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.
基金supported by the National Key R&D Program of China(Nos.2016YFA0401304 and 2017YFA0403302)the National Natural Science Foundation of China(NSFC)(Nos.61621001,11505129,and U1732268)
文摘Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high-reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200℃ in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 ℃ and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175℃, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.
基金Project supported by the National Key Research Program of China(Grant No.2011ZX01015-001)
文摘We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921400 and 2011CB921802)the National Natural Science Foundation of China(Grant Nos.11374057,11434003,and 11421404)
文摘The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.
基金supported by the National Natural Science Foundation of China(Grant No.61405225)
文摘In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300℃ on the structure, morphology and stress of the film are studied. We find that chromium could diffuse to the surface of the film by formatting a solid solution with gold during annealing. Meanwhile, chromium is oxidized on the surface and diffused downward along the grain grooves in the gold film. The various operant mechanisms that change the residual stresses of gold films for different annealing times are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701382,61601355,and 61571355)the China Postdoctoral Science Foundation(Grant No.2016M602770)the Xi’an Technological University Principal Foundation Key Project,China(Grant No.XAGDXJJ18001)
文摘Based on the three-dimensional dispersive finite difference time domain method and Maxwell stress tensor equation,the optical trapping properties of nanoparticle placed on the gold film with periodic circular holes are investigated numerically. Surface plasmon polaritons are excited on the metal-dielectric interface, with particular emphasis on the crucial role in tailoring the optical force acting on a nearby nanoparticle. Utilizing a first order corrected electromagnetic field components for a fundamental Gaussian beam, the incident beam is added into the calculation model of the proposed method. To obtain the detailed trapping properties of nanoparticle, the selected calculations on the effects of beam waist radius, sizes of nanoparticle and circular holes, distance between incident Gaussian beam and gold film, material of nanoparticle and polarization angles of incident wave are analyzed in detail to demonstrate that the optical-trapping force can be explained as a virtual spring which has a restoring force to perform positive and negative forces as a nanoparticle moves closer to or away from the centers of circular holes. The results of optical trapping properties of nanoparticle in the vicinity of the gold film could provide guidelines for further research on the optical system design and manipulation of arbitrary composite nanoparticles.