期刊文献+
共找到848篇文章
< 1 2 43 >
每页显示 20 50 100
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
1
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
2
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
3
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于GA-PSO-MPC的自动驾驶汽车路径跟踪控制
4
作者 王子喆 李波 +2 位作者 葛文庆 陆佳瑜 王凯毅 《河北科技大学学报》 北大核心 2025年第5期498-507,共10页
针对模型预测控制(model prediction control,MPC)算法在自动驾驶汽车路径跟踪控制中权重矩阵选取困难,导致控制精度低和控制器运行效率低的问题,提出了一种遗传粒子群模型预测控制算法(genetic particle swarm optimization model pred... 针对模型预测控制(model prediction control,MPC)算法在自动驾驶汽车路径跟踪控制中权重矩阵选取困难,导致控制精度低和控制器运行效率低的问题,提出了一种遗传粒子群模型预测控制算法(genetic particle swarm optimization model prediction control,GA-PSO-MPC)。首先,建立车辆动力学模型,根据动力学模型确定目标函数并加入约束条件设计MPC控制器;其次,利用遗传粒子群算法(genetic particle swarm optimization,GA-PSO)对模型预测控制器的权重矩阵进行优化;最后,搭建Carsim/Simulink仿真平台,将GA-PSO-MPC控制器与传统MPC控制器的跟踪性能进行对比,完成不同车速、不同工况下的路径跟踪控制仿真。结果表明,经过GA-PSO算法优化权重矩阵后的控制器,收敛速度提高了68.85%,最大横向误差降低了63.9%。在各种车速下,GA-PSO-MPC控制器的运行效率与跟踪精度均优于传统MPC控制器,可以有效解决传统模型预测控制器运行效率低、跟踪精度不足的问题。 展开更多
关键词 车辆工程 路径跟踪 模型预测控制 遗传算法 粒子群算法
在线阅读 下载PDF
基于GA-PSO的矿井通风网络优化方法研究 被引量:2
5
作者 王伟峰 白玉 +3 位作者 杨泽 李寒冰 陈怡帆 马岩松 《矿业安全与环保》 北大核心 2025年第2期24-29,共6页
针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交... 针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交叉-高斯变异算子组合提升种群多样性,增强全局收敛性并避免局部最优;针对PSO的早熟现象,设计潜力粒子替换与冗余粒子重启的淘汰策略,并提出基于适应值标准差的自适应惯性权重调节策略,提高算法全局搜索能力;结合学习因子的动态协同机制,实现全局探索与局部优化的动态平衡。结果表明,优化后的通风机功耗降低16.86%,证明GA-PSO在收敛速度和优化能力方面显著优于单独应用GA或PSO,有效克服了传统方法在复杂风网中的早熟收敛与维度灾难问题,为矿井通风系统节能与安全调控提供理论支撑。 展开更多
关键词 煤矿通风 遗传算法 粒子群优化算法 网络解算优化 风机功耗
在线阅读 下载PDF
基于GA-PSO-BP神经网络的气象能见度预测 被引量:4
6
作者 邱国新 殷利平 +2 位作者 刘长征 梅平 温华洋 《科学技术与工程》 北大核心 2024年第15期6164-6171,共8页
针对安徽省气象能见度数据缺测问题,选取安徽省4种不同地形条件下的自动气象站点(黄山站、灵璧站、山南溪谷站、白泽湖站)2017—2019年的气象数据,首先采用灰色关联分析法筛选出与能见度联系紧密的气象要素,然后构建遗传算法(genetic al... 针对安徽省气象能见度数据缺测问题,选取安徽省4种不同地形条件下的自动气象站点(黄山站、灵璧站、山南溪谷站、白泽湖站)2017—2019年的气象数据,首先采用灰色关联分析法筛选出与能见度联系紧密的气象要素,然后构建遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization algorithm,PSO)混合算法优化BP(back propagation)神经网络的预测模型,对4种不同地形条件下的自动气象站点的能见度进行预测,并与RF预测模型、XGBoost预测模型的预测效果进行对比,结果表明采用GA-PSO-BP神经网络预测模型无论在哪种地形条件下,预测误差更小,模型精度更高。 展开更多
关键词 遗传算法 粒子群算法 BP神经网络 能见度预测
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
7
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于GA-PSO混合优化SVM的机载EHA故障诊断 被引量:3
8
作者 覃刚 葛益波 +1 位作者 姚叶明 周清和 《液压与气动》 北大核心 2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti... 针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。 展开更多
关键词 机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类SVM
在线阅读 下载PDF
复杂地形风电场微观选址的GA-PSO混合算法研究 被引量:2
9
作者 胡伟成 杨庆山 +3 位作者 聂彪 陈华鹏 闫渤文 许紫刚 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期118-125,共8页
提出一种结合改进遗传算法(GA)和粒子群算法(PSO)的GA-PSO混合算法对复杂地形的风力机排布方案进行优化。以湖南省某实际复杂地形为对象,开展风场全风向数值模拟,结合长期观测风资料评估区域的潜在风能分布,提出考虑网格预处理、时变变... 提出一种结合改进遗传算法(GA)和粒子群算法(PSO)的GA-PSO混合算法对复杂地形的风力机排布方案进行优化。以湖南省某实际复杂地形为对象,开展风场全风向数值模拟,结合长期观测风资料评估区域的潜在风能分布,提出考虑网格预处理、时变变异率、唯一化和并行化的改进GA(IGA)对风力机排布方案进行优化,在此基础上利用PSO算法进行进一步优化,并针对尾流模型和目标函数对优化结果的影响进行不确定性分析。结果表明,在复杂地形风电场微观选址方面,所提GA-PSO算法比贪婪算法、GA、IGA分别改善16.4%、12.9%和5.1%。 展开更多
关键词 风电场 遗传算法 粒子群算法 复杂地形 微观选址 计算流体动力学
在线阅读 下载PDF
Intelligent optimization methods of phase-modulation waveform
10
作者 SUN Jianwei WANG Chao +3 位作者 SHI Qingzhan REN Wenbo YAO Zekun YUAN Naichang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期916-923,共8页
With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex ele... With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work. 展开更多
关键词 waveform optimization intelligent optimization PHASE-MODULATION genetic algorithm(GA) particle swarm optimization(PSO)
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
11
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
12
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
六自由度工业机器人运动学参数辨识 被引量:1
13
作者 胡明 郭玉奉 +1 位作者 杨景 杨帆 《机械设计与制造》 北大核心 2025年第6期314-319,共6页
作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分... 作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分别进行辨识仿真,仿真结果表明,误差模型5拥有较高的辨识精度和辨识稳定性,适合用于实际辨识实验。利用高精度相机测量机器人末端位姿,通过粒子群寻优算法求取机器人基坐标系与相机坐标系之间转换矩阵。基于视觉测量数据、量子遗传算法和粒子群算法,以误差模型5作为实际辨识模型分别进行辨识实验。结果表明,基于误差模型5的量子遗传算法辨识后的机器人末端综合位置误差的方差小,其值为0.1159mm2,曲线波动幅度小,且平均误差下降82.96%,有较高的辨识精度和辨识稳定性,可有效提升机器人末端的定位精度,为基于视觉的动态目标捕捉提供条件。 展开更多
关键词 机器人运动学 参数辨识 误差模型 量子遗传算法 粒子群算法 手眼标定
在线阅读 下载PDF
提升LCL型并网逆变器在弱电网下适应性的优化策略
14
作者 王涛 于少娟 刘立群 《电力系统及其自动化学报》 北大核心 2025年第1期26-34,共9页
为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误... 为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误差和系统稳定性指标在内的多目标函数,并利用混合粒子群优化算法对控制器参数进行优化,进而提高系统在电网阻抗发生变化时的鲁棒性。最后,通过仿真平台以及实验验证了该策略的有效性。 展开更多
关键词 并网逆变器 弱电网 混合粒子群优化算法 多目标优化
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
15
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于融合注意力机制BP神经网络的深基坑变形预测方法
16
作者 张明聚 秦胜旺 +3 位作者 李鹏飞 葛辰贺 杨萌 谢治天 《北京交通大学学报》 北大核心 2025年第2期95-104,共10页
针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention... 针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention)组合成GA-Attention-BP和PSO-Attention-BP神经网络模型.依托南京双子座基坑工程,采用PLAXIS 2D模拟了680组不同工况下围护结构及地表的变形特征,并结合20组南京地区基坑实测监测数据作为数据集,以均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和决定系数(RSquare,R2)作为评价指标,将不同神经网络的预测值和实际监测值进行对比.研究结果表明:GAAttention-BP和PSO-Attention-BP的MSE分别为3.47和3.22,MAE分别为1.59和1.47,R2分别为0.93和0.96,较BP和Attention-BP神经网络有较大的性能提升,预测效果较好;基于注意力机制的权重分配结果表明,基坑深度和地下连续墙的宽度对围护结构变形的影响最为显著,其权重系数分别高达1.33和1.17. 展开更多
关键词 深基坑工程 数值模拟 注意力机制 反向传播 遗传算法 粒子群算法
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
17
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究
18
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 BP神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
智能算法优化的泊车路径规划及跟踪控制方法
19
作者 于蕾艳 侯泽宇 +2 位作者 蔡永鹏 陈苏雨 胡淄华 《江苏大学学报(自然科学版)》 北大核心 2025年第6期621-630,共10页
为了解决无人驾驶汽车平行泊车路径曲率不连续、泊车效率低、路径跟踪精度低等问题,分析了圆弧-直线-圆弧型初始泊车路径的特点,并采用五次多项式曲线进行路径规划.为平衡路径长度与曲率,基于路径最大曲率、泊车所需空间及避障要求等约... 为了解决无人驾驶汽车平行泊车路径曲率不连续、泊车效率低、路径跟踪精度低等问题,分析了圆弧-直线-圆弧型初始泊车路径的特点,并采用五次多项式曲线进行路径规划.为平衡路径长度与曲率,基于路径最大曲率、泊车所需空间及避障要求等约束条件,构建目标函数,旨在最小化最大曲率与泊车起点横坐标加权之和.随后,运用非线性动态自适应惯性权重的粒子群优化算法对泊车起点横坐标进行优化.经过优化,路径变得平缓光滑,曲率连续.基于模型预测控制的路径跟踪控制方法,通过遗传算法优化预测时域和控制时域,在保证跟踪精度的同时降低计算工作量,并在百度Apollo自动驾驶开发者套件上完成实车验证.试验结果表明:车辆能够安全无碰撞地完成泊车,验证了路径规划方法的有效性;在降低计算量的前提下,路径跟踪误差平均值较优化前降低了4.348%,表明该方法能够更精确地跟踪规划路径. 展开更多
关键词 路径规划 自动泊车 路径跟踪 粒子群优化算法 模型预测控制 遗传算法
在线阅读 下载PDF
有向无环图建模的自动导引车任务调度优化
20
作者 胡毅 崔梦笙 +1 位作者 张曦阳 赵彦庆 《浙江大学学报(工学版)》 北大核心 2025年第8期1680-1688,共9页
针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约... 针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约束和任务节点信息随环境变化,以最小化AGV行驶总距离为目标,建立基于有向无环图建模的动态旅行商问题(DAGDTSP)模型,提出改进遗传算法(IGA)求解模型.实验结果表明,针对AGV任务调度方案的优化,利用IGA算法,能够有效地求解固定任务选择策略下的优化调度方案. BPSO嵌套框架能够提升求解质量,所求解的优化调度方案能够在一定程度上适应任务变化. DAGDTSP模型在不同环境参数设置的测试问题上具备准确性. 展开更多
关键词 任务调度 行驶总距离 有向无环图 遗传算法 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部