To improve mesh quality for KIVA-3V a method has been developed for rapid mesh generation and dynamic mesh management with moving valves for internal combustion engines. Two phases are included in rapid mesh generatio...To improve mesh quality for KIVA-3V a method has been developed for rapid mesh generation and dynamic mesh management with moving valves for internal combustion engines. Two phases are included in rapid mesh generation: the initial mesh generation and the mesh pre-treatment. In the second step (pre-treatment), the connectivity of those cells is generated by a new algorithm added to the KIVA-3V code after the initial mesh generated. In dynamic mesh management phase, a new rezoning algorithm is developed and the basic principle is that the rezoning starts from the moving part. The movement of the adjustment is treated as an "earth quake wave" propagating to the surrounding vertexes. The amount of coordinate adjustment of the surrounding vertexes is determined by the movement of the epicenter and the distance between the vertexes and the "epicenter". Finally, a real IC engine mesh is generated and managed aceording to the new method. It gives a new theory and a new method for creating and managing the mesh in IC engine.展开更多
This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid ...This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.展开更多
Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation is proposed in this paper to improve the efficiency and accuracy of electromagnetic calculation. An image boundary extract...Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation is proposed in this paper to improve the efficiency and accuracy of electromagnetic calculation. An image boundary extraction algorithm is developed to map the image on the geometric domain. Identification algorithm for the location of nodes in polygon area is proposed to determine the state of the node. To promote the average quality of the mesh and the efficiency of mesh generation, a novel force-based mesh smoothing algorithm is proposed. One test case and a typical electromagnetic calculation are used to testify the effectiveness and efficiency of the proposed algorithm. The results demonstrate that the proposed algorithm can produce a high-quality mesh with less iteration.展开更多
In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh contro...In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.展开更多
Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling ...Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.展开更多
This paper is concerned about the automatic finite element modeling of a wing structure. The row and column method is used to identify the structure parts(ribs, spars, skins and pillars). A customization module of...This paper is concerned about the automatic finite element modeling of a wing structure. The row and column method is used to identify the structure parts(ribs, spars, skins and pillars). A customization module of PCL(PATRAN Command Language under PATRAN 6.0) code from constructing airfoil curves to creating the entire wing FEM model is designed and developed. The geome tric, mesh density, material, load and boundary parameters can be easily and correctly input with the friendly interactive interface. A VFW614 wing is analyzed from creating airfoil curves to the show of stresses calculated by using NASTRAN 68 as an example. The results show that this customization module is very effective and efficient.展开更多
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method...This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.展开更多
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ...We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.展开更多
基金Sponsored by the Ministerial Level Foundation (1003)Beijing Municipal Commission of Education Foundation (KM200710016013)
文摘To improve mesh quality for KIVA-3V a method has been developed for rapid mesh generation and dynamic mesh management with moving valves for internal combustion engines. Two phases are included in rapid mesh generation: the initial mesh generation and the mesh pre-treatment. In the second step (pre-treatment), the connectivity of those cells is generated by a new algorithm added to the KIVA-3V code after the initial mesh generated. In dynamic mesh management phase, a new rezoning algorithm is developed and the basic principle is that the rezoning starts from the moving part. The movement of the adjustment is treated as an "earth quake wave" propagating to the surrounding vertexes. The amount of coordinate adjustment of the surrounding vertexes is determined by the movement of the epicenter and the distance between the vertexes and the "epicenter". Finally, a real IC engine mesh is generated and managed aceording to the new method. It gives a new theory and a new method for creating and managing the mesh in IC engine.
文摘This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52077203 and 61701467)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY19E070003)。
文摘Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation is proposed in this paper to improve the efficiency and accuracy of electromagnetic calculation. An image boundary extraction algorithm is developed to map the image on the geometric domain. Identification algorithm for the location of nodes in polygon area is proposed to determine the state of the node. To promote the average quality of the mesh and the efficiency of mesh generation, a novel force-based mesh smoothing algorithm is proposed. One test case and a typical electromagnetic calculation are used to testify the effectiveness and efficiency of the proposed algorithm. The results demonstrate that the proposed algorithm can produce a high-quality mesh with less iteration.
文摘In this paper, a process of the quadtree mesh generation is described, then a mesh control device of the tree based mesh generators is analyzed in detail. Some examples are given to demonstrate that the mesh control device allows for efficient a priori and a posteriori mesh refinements.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-006)
文摘Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.
文摘This paper is concerned about the automatic finite element modeling of a wing structure. The row and column method is used to identify the structure parts(ribs, spars, skins and pillars). A customization module of PCL(PATRAN Command Language under PATRAN 6.0) code from constructing airfoil curves to creating the entire wing FEM model is designed and developed. The geome tric, mesh density, material, load and boundary parameters can be easily and correctly input with the friendly interactive interface. A VFW614 wing is analyzed from creating airfoil curves to the show of stresses calculated by using NASTRAN 68 as an example. The results show that this customization module is very effective and efficient.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 11302057, 11302056), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF140115) and the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310).
文摘This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
文摘We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.