Primers and probes were established according to the sequences of the alpha-amylase genes of Bacillus. halodurans C-125, Therrnus sp. IM6501, B. stearothermophilus ET-1, and B, acidopullulytics. Primers were designed ...Primers and probes were established according to the sequences of the alpha-amylase genes of Bacillus. halodurans C-125, Therrnus sp. IM6501, B. stearothermophilus ET-1, and B, acidopullulytics. Primers were designed and a 0.2 kb DNA fragment was amplified, the fragment was successfully used for the detection of the amylase Ⅱ gene in a 2 842 bp region from Bacillus halodurans strain 38C1-1.展开更多
At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software too...At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software tools were used to analyze and predict the gene family and this gene.There were 30 members of the cucumber F-box gene family.The coding region of the cucumber CsFK111 gene was full-length 1314 bp,which encoded 437 amino acids and was predicted to be located in the nucleus.The protein encoded by this gene was a non-transmembrane protein,and the prediction of the secondary structure showed thatβ-lamellar structure and irregular crimp were dominant.A comparison of the phylogenetic tree showed that it was closest to cantaloupe and belonged to the same branch.The results provided a basis for future study on the regulation mechanism of the CsFK111 gene on cucumber dwarfing and also laid a foundation for further study of FBK family proteins.展开更多
According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gen...According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gene was gotten from Bacillus bifidus ATCC 29521 by PCR. BSH gene was inserted into lactic acid bacteria expression vector pNZ8148 to construct the recombinant pNZ8148-BSH. The recombinant pNZ8148-BSH was transferred into lactic acid bacteria NZ9000 with electrotransformation method. And the recombinant which could express BSH protein was obtained. It was identified by SDS-PAGE electrophoresis and activity verification. The result could provide a rationale reference for expressing BSH in lactic acid bacteria.展开更多
The purpose of this study is to find a new gene resource for the researches of molecular breeding of Rosaceae plants disease-resistance. Pyrus ussuriensis Maxim is used as a starting material to clone the full-length ...The purpose of this study is to find a new gene resource for the researches of molecular breeding of Rosaceae plants disease-resistance. Pyrus ussuriensis Maxim is used as a starting material to clone the full-length cDNA of NPR1(nonexpressor of pathogenesis- related genes 1) which is a key regulator in SA (salicylic acid)-mediated systemic acquired resistance (SAR) by homologous cloning and RACE techniques. The length of the cDNA sequence was 1 767 bp, the ORF was 1 761 bp, it coded 586 amino acids, pi=5.58, the relative molecular weight was 65.009 ku, contained 19 kinds of amino acids, and had full BTB/POZ and ANK domains. Compared the homology of NPR1 gene in GenBank database, the homology with Pyrus pyrifolia, Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum, Oryza sativa, Helianthus annuus were 98%, 62%, 68%, 65%, 57%, 63%. The homology offunctional area were 99%, 78%, 82%, 79%, 74%, 77%. This NPR1 gene was considered as homologic gene of Pyrus ussuriensis Maxim and named PumNPR1.展开更多
We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequenc...We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH, pNZ8148-BSH was transferred into Lactococcus lactis NZ9000. Sequencing indicated that the cloned bsh fragment contained 995 nucleotides, and shared 99.3% sequence homology with bsh gene from L. plantarum MBUL10. Cloned bsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 μmol· min^-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.展开更多
Trehalose synthase is an important functional enzyme in the synthesis of trehalose in organisms and also participates in plant stress-resistant physiological processes.The transcriptomic study showed that a trehalose-...Trehalose synthase is an important functional enzyme in the synthesis of trehalose in organisms and also participates in plant stress-resistant physiological processes.The transcriptomic study showed that a trehalose-6-phosphate synthase gene was responsive to salt and alkaline stresses in Glycine soja.To dissect the molecular mechanisms of this enzyme in plant responses to stresses,the PCR technique was used to clone a trehalose-6-phosphate synthase gene from Glycine soja and it was designated as the GsTPS9.The full-length cDNA of this gene was 2583bp which encoded 861 amino acids.The sequence and structure analyses indicated that the GsTPS9 had high homology with Glycine max GmTPS9.The qRT-PCR analysis revealed that the GsTPS9 gene was expressed in Glycine soja roots,stems and leaves,and the highest expression level was in roots;the GsTPS9 gene had different responses under the stresses of NaCl,NaHCO_(3),PEG6000,ABA,MeJA and SA.This study laid the foundation for revealing the mechanism of the TPS in plant signal transduction pathways.展开更多
S-adenosylmethionine (SAM) plays important role in trans-methyl reactions. Under the condition of drought (30% PEG), salinity (200 mmol· L^-1 NaCl) and low temperature (4℃), total RNA was extracted from ...S-adenosylmethionine (SAM) plays important role in trans-methyl reactions. Under the condition of drought (30% PEG), salinity (200 mmol· L^-1 NaCl) and low temperature (4℃), total RNA was extracted from the leaf and the first strand of cDNA was synthesized with reverse transcription. S-adenosylmethionine synthetase gene (SAMS gene) was amplified by PCR with the first strand cDNA as template and a pair of primers which was based on constructed ESTs sequence. Full-length SAMS gene sequence was obtained by BLAST comparison. According to the analysis, completed sequence of SAMS gene was integrality. The sequence of the SAMS gene was 1 185 bp in length with an opening reading frame (ORF) encoding 394 amino acids. The cDNA sequence showed a significant homology to the SAM genes from Phaseolus lunatus (89%), Medicago sativa (85%). A prokaryotic expression vectors based on pET-32b had been constructed and prokaryotic expression was analyzed in order to lay a strong foundation for resist adversity function analysis through situation of genic expression analysis.展开更多
As a major raw material for the textile industry and the most important fiber crop in the world,cotton is of great significance in Chinese economy.The development of cotton fiber can be divided
Plants have developed a complicated defense mechanism during evolution to resist the harmful pathogens they encountered.The mechanism involves the interaction of the plant resistance(R)
Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is
Sea Island cotton(Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether
A novel rice gene OsAPT2,which encodes a putative adenine phosphoribosyl transferase(APRT),was cloned.Its full-length cDNA is 1125bp,composing an ORF encoding 212 amino acid residues and a stop cordon,a 5' UTR of ...A novel rice gene OsAPT2,which encodes a putative adenine phosphoribosyl transferase(APRT),was cloned.Its full-length cDNA is 1125bp,composing an ORF encoding 212 amino acid residues and a stop cordon,a 5' UTR of 123 bp and a 3' UTR of 363 bp.The sequence data have been submitted to the DDBJ/EMBL/GenBank databases(accession number:AY238894).The deduced amino acid sequence of OsAPT2 is highly homologous to those of previously reported APRTs.The genomic OsAPT2 gene contains 7 exons and 6 introns.Its total length is 4758 bp.Then,an antisense expression vector of the full-length OsAPT2 cDNA was constructed and transformed into rice variety Taibei309 by Agrobacterium tumefaciens mediated transformation method.In total,650 T0 transgenic plants were obtained based on both antibiotic screening and specific PCR identification.One hundred individuals of them were selected and planted in Hainan Island.From those 11 male sterile lines with seed-setting rate lower than 3% in bagged spike were obtained.Results suggest that OsAPT2 is involved in male sterility.Nine of the 11 male sterile lines were constitutive sterile lines;two of the 11 male sterile lines were thermo-sensitive genic male sterile lines,which may be useful in hybride rice breeding.展开更多
The mechanistic basis of cellulose biosynthesis in plants has gained ground during last decade or so.The isolation of plant cDNA clones encoding cotton homologs of the bacterial cellulose
Barley Fusarium head blight(FHB),caused by species of the Fusarium fungus,is a devastating disease that is reemerging worldwide in recent years.In this study,a novel gene,HvORG4,was cloned from barley by using cDNA li...Barley Fusarium head blight(FHB),caused by species of the Fusarium fungus,is a devastating disease that is reemerging worldwide in recent years.In this study,a novel gene,HvORG4,was cloned from barley by using cDNA library and suppression subtractive hybridization(SSH) library strategies.The SSH library and cDNA library were constructed from the Chinese barley cultivar Jing02-461(resistance to FHB) infected by Fusarium graminearum isolate Huanggang-1.For the SSH analysis,more than 120 differentially expressed cDNAs were identified and sequenced.One of them showed high homology to the AtORG4 gene and was used as a probe to screen the cDNA library of Jing02-461.Six positive clones were identified and one of them contained a full-length cDNA,which was named HvORG4.Sequence analysis showed that HvORG4 encoded a deduced basic protein of 197 amino acids.Northern blotting analysis showed that HvORG4 was constitutively expressed in root and stalk,not in leaf or spike,and strongly induced in barley spikelets in response to infection with F.graminearum isolate Huanggang-1.Its homology and expression profile suggest that the HvORG4 might function as a transcription factor,playing an important role in signal transduction pathway for defense against FHB in barley.展开更多
Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems m...Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems much easier to find strongly antifreeze genes and obtain effective results in transgenic woody plants.In this study,Ammopiptanthus mongolicus,an evergreen,broadleaf and cold-resist leguminous shrub growing in the desert of Inner Mongolia,was used as a material for low-temperature induced gene isolation.Through differential expression analysis induced by low-temperature,thirteen up-regulated cDNAs were identified.One of them,AmEBP1,(accession number:DQ519359)confers enhanced cold-tolerance to both transgenic E.coli and transgenic Arabidopsis.Results suggest that AmEBP1 can stimulate the synthesis of ribosome and the dephosphyration of the α-subunit of initiation factor 2(eIF2α),and subsequently promote the translation process.By which the transgenic plants obtained increased cold-resistant ability.展开更多
The outer membrane protein, ompA, ofAeromonas veronii has a role in the virulence of the organism and is a potential candidate for vaccine development. In this study, ompA I ofAeromonas veronii strain WA106 was cloned...The outer membrane protein, ompA, ofAeromonas veronii has a role in the virulence of the organism and is a potential candidate for vaccine development. In this study, ompA I ofAeromonas veronii strain WA106 was cloned and sequenced, then, it was expressed in Escherichia coli BL21. The nucleotide sequence of ompA I gene was 1 023 base pairs (GenBank Accession NO.KC748024), which showed 100% homology with that of A. veronii (NO.AB290200.1). This predicted protein was composed of 340 amino acid residues. Its molecular weight was 35.78 ku and isoelectric point was 5.18. The protein was a hydrophilic protein containing alpha helix and random coil with percentage of 35.0% and 49.7%, respectively. The tertiary structure, quaternary structure prediction showed that ompA I protein contained two peptide chains. SDS-PAGE showed that the actual value of the fusion protein was consistent with the expected result. It will facilitate further study of the role of ompA I protein.展开更多
基金Natural Science Foundation of Heilongjiang Province (C9912)
文摘Primers and probes were established according to the sequences of the alpha-amylase genes of Bacillus. halodurans C-125, Therrnus sp. IM6501, B. stearothermophilus ET-1, and B, acidopullulytics. Primers were designed and a 0.2 kb DNA fragment was amplified, the fragment was successfully used for the detection of the amylase Ⅱ gene in a 2 842 bp region from Bacillus halodurans strain 38C1-1.
基金Supported by the National Natural Science Foundation of China(32272724)the National Science Foundation of Heilongjiang Province,China(LH2019C033)。
文摘At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software tools were used to analyze and predict the gene family and this gene.There were 30 members of the cucumber F-box gene family.The coding region of the cucumber CsFK111 gene was full-length 1314 bp,which encoded 437 amino acids and was predicted to be located in the nucleus.The protein encoded by this gene was a non-transmembrane protein,and the prediction of the secondary structure showed thatβ-lamellar structure and irregular crimp were dominant.A comparison of the phylogenetic tree showed that it was closest to cantaloupe and belonged to the same branch.The results provided a basis for future study on the regulation mechanism of the CsFK111 gene on cucumber dwarfing and also laid a foundation for further study of FBK family proteins.
基金Supported by 863 Projects (2008AA10Z311)National Science and Technology Support Projects (2009BADB9B06)+1 种基金Started Post-doctoral Research Grant of Heilongjiang Province (LBH-Q07023)Harbin Technological Innovation of Special Funds (2007RFQXN020)
文摘According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gene was gotten from Bacillus bifidus ATCC 29521 by PCR. BSH gene was inserted into lactic acid bacteria expression vector pNZ8148 to construct the recombinant pNZ8148-BSH. The recombinant pNZ8148-BSH was transferred into lactic acid bacteria NZ9000 with electrotransformation method. And the recombinant which could express BSH protein was obtained. It was identified by SDS-PAGE electrophoresis and activity verification. The result could provide a rationale reference for expressing BSH in lactic acid bacteria.
文摘The purpose of this study is to find a new gene resource for the researches of molecular breeding of Rosaceae plants disease-resistance. Pyrus ussuriensis Maxim is used as a starting material to clone the full-length cDNA of NPR1(nonexpressor of pathogenesis- related genes 1) which is a key regulator in SA (salicylic acid)-mediated systemic acquired resistance (SAR) by homologous cloning and RACE techniques. The length of the cDNA sequence was 1 767 bp, the ORF was 1 761 bp, it coded 586 amino acids, pi=5.58, the relative molecular weight was 65.009 ku, contained 19 kinds of amino acids, and had full BTB/POZ and ANK domains. Compared the homology of NPR1 gene in GenBank database, the homology with Pyrus pyrifolia, Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum, Oryza sativa, Helianthus annuus were 98%, 62%, 68%, 65%, 57%, 63%. The homology offunctional area were 99%, 78%, 82%, 79%, 74%, 77%. This NPR1 gene was considered as homologic gene of Pyrus ussuriensis Maxim and named PumNPR1.
基金Supported by the National Natural Science Fund Project(31171657)Heilongjiang Province Natural Fund Project(ZD201207)Heilongjiang Province Postdoctoral Special Funds(LBH-Q13133)
文摘We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH, pNZ8148-BSH was transferred into Lactococcus lactis NZ9000. Sequencing indicated that the cloned bsh fragment contained 995 nucleotides, and shared 99.3% sequence homology with bsh gene from L. plantarum MBUL10. Cloned bsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 μmol· min^-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.
基金Supported by the National Natural Science Foundation of China(31670272)Heilongjiang Provincial Natural Science Foundation(C2017014)。
文摘Trehalose synthase is an important functional enzyme in the synthesis of trehalose in organisms and also participates in plant stress-resistant physiological processes.The transcriptomic study showed that a trehalose-6-phosphate synthase gene was responsive to salt and alkaline stresses in Glycine soja.To dissect the molecular mechanisms of this enzyme in plant responses to stresses,the PCR technique was used to clone a trehalose-6-phosphate synthase gene from Glycine soja and it was designated as the GsTPS9.The full-length cDNA of this gene was 2583bp which encoded 861 amino acids.The sequence and structure analyses indicated that the GsTPS9 had high homology with Glycine max GmTPS9.The qRT-PCR analysis revealed that the GsTPS9 gene was expressed in Glycine soja roots,stems and leaves,and the highest expression level was in roots;the GsTPS9 gene had different responses under the stresses of NaCl,NaHCO_(3),PEG6000,ABA,MeJA and SA.This study laid the foundation for revealing the mechanism of the TPS in plant signal transduction pathways.
基金National Science Foundation (30570990)Heilongjiang Province Educational Committee Science Research Foundation (11521023)
文摘S-adenosylmethionine (SAM) plays important role in trans-methyl reactions. Under the condition of drought (30% PEG), salinity (200 mmol· L^-1 NaCl) and low temperature (4℃), total RNA was extracted from the leaf and the first strand of cDNA was synthesized with reverse transcription. S-adenosylmethionine synthetase gene (SAMS gene) was amplified by PCR with the first strand cDNA as template and a pair of primers which was based on constructed ESTs sequence. Full-length SAMS gene sequence was obtained by BLAST comparison. According to the analysis, completed sequence of SAMS gene was integrality. The sequence of the SAMS gene was 1 185 bp in length with an opening reading frame (ORF) encoding 394 amino acids. The cDNA sequence showed a significant homology to the SAM genes from Phaseolus lunatus (89%), Medicago sativa (85%). A prokaryotic expression vectors based on pET-32b had been constructed and prokaryotic expression was analyzed in order to lay a strong foundation for resist adversity function analysis through situation of genic expression analysis.
基金This work was funded by grants fromthe National Basic Research and Development Program(2004CB117304)the Hi-tech Research and Development Program of China (2007AA10Z115)
文摘As a major raw material for the textile industry and the most important fiber crop in the world,cotton is of great significance in Chinese economy.The development of cotton fiber can be divided
文摘Plants have developed a complicated defense mechanism during evolution to resist the harmful pathogens they encountered.The mechanism involves the interaction of the plant resistance(R)
文摘Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is
文摘Sea Island cotton(Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether
文摘A novel rice gene OsAPT2,which encodes a putative adenine phosphoribosyl transferase(APRT),was cloned.Its full-length cDNA is 1125bp,composing an ORF encoding 212 amino acid residues and a stop cordon,a 5' UTR of 123 bp and a 3' UTR of 363 bp.The sequence data have been submitted to the DDBJ/EMBL/GenBank databases(accession number:AY238894).The deduced amino acid sequence of OsAPT2 is highly homologous to those of previously reported APRTs.The genomic OsAPT2 gene contains 7 exons and 6 introns.Its total length is 4758 bp.Then,an antisense expression vector of the full-length OsAPT2 cDNA was constructed and transformed into rice variety Taibei309 by Agrobacterium tumefaciens mediated transformation method.In total,650 T0 transgenic plants were obtained based on both antibiotic screening and specific PCR identification.One hundred individuals of them were selected and planted in Hainan Island.From those 11 male sterile lines with seed-setting rate lower than 3% in bagged spike were obtained.Results suggest that OsAPT2 is involved in male sterility.Nine of the 11 male sterile lines were constitutive sterile lines;two of the 11 male sterile lines were thermo-sensitive genic male sterile lines,which may be useful in hybride rice breeding.
文摘The mechanistic basis of cellulose biosynthesis in plants has gained ground during last decade or so.The isolation of plant cDNA clones encoding cotton homologs of the bacterial cellulose
文摘Barley Fusarium head blight(FHB),caused by species of the Fusarium fungus,is a devastating disease that is reemerging worldwide in recent years.In this study,a novel gene,HvORG4,was cloned from barley by using cDNA library and suppression subtractive hybridization(SSH) library strategies.The SSH library and cDNA library were constructed from the Chinese barley cultivar Jing02-461(resistance to FHB) infected by Fusarium graminearum isolate Huanggang-1.For the SSH analysis,more than 120 differentially expressed cDNAs were identified and sequenced.One of them showed high homology to the AtORG4 gene and was used as a probe to screen the cDNA library of Jing02-461.Six positive clones were identified and one of them contained a full-length cDNA,which was named HvORG4.Sequence analysis showed that HvORG4 encoded a deduced basic protein of 197 amino acids.Northern blotting analysis showed that HvORG4 was constitutively expressed in root and stalk,not in leaf or spike,and strongly induced in barley spikelets in response to infection with F.graminearum isolate Huanggang-1.Its homology and expression profile suggest that the HvORG4 might function as a transcription factor,playing an important role in signal transduction pathway for defense against FHB in barley.
文摘Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems much easier to find strongly antifreeze genes and obtain effective results in transgenic woody plants.In this study,Ammopiptanthus mongolicus,an evergreen,broadleaf and cold-resist leguminous shrub growing in the desert of Inner Mongolia,was used as a material for low-temperature induced gene isolation.Through differential expression analysis induced by low-temperature,thirteen up-regulated cDNAs were identified.One of them,AmEBP1,(accession number:DQ519359)confers enhanced cold-tolerance to both transgenic E.coli and transgenic Arabidopsis.Results suggest that AmEBP1 can stimulate the synthesis of ribosome and the dephosphyration of the α-subunit of initiation factor 2(eIF2α),and subsequently promote the translation process.By which the transgenic plants obtained increased cold-resistant ability.
基金Supported by the Science&Technology Department of Sichuan Province(2013FZ0014)the Construction Project of Postgraduate Academic Degree in Southwest University for Nationalities(2015XWD-S071007)
文摘The outer membrane protein, ompA, ofAeromonas veronii has a role in the virulence of the organism and is a potential candidate for vaccine development. In this study, ompA I ofAeromonas veronii strain WA106 was cloned and sequenced, then, it was expressed in Escherichia coli BL21. The nucleotide sequence of ompA I gene was 1 023 base pairs (GenBank Accession NO.KC748024), which showed 100% homology with that of A. veronii (NO.AB290200.1). This predicted protein was composed of 340 amino acid residues. Its molecular weight was 35.78 ku and isoelectric point was 5.18. The protein was a hydrophilic protein containing alpha helix and random coil with percentage of 35.0% and 49.7%, respectively. The tertiary structure, quaternary structure prediction showed that ompA I protein contained two peptide chains. SDS-PAGE showed that the actual value of the fusion protein was consistent with the expected result. It will facilitate further study of the role of ompA I protein.