Five-valued Boolean functions play an important role in the design of symmetric cryptography.While the design and properties of single-output almost optimal five-valued spectra Boolean functions have been extensively ...Five-valued Boolean functions play an important role in the design of symmetric cryptography.While the design and properties of single-output almost optimal five-valued spectra Boolean functions have been extensively studied over the past few decades,there has been limited research on the construction of almost optimal five-valued spectra vectorial Boolean functions.In this paper,we present a construction method for even-variable 2-output almost optimal five-valued spectra balanced Boolean functions,whose Walsh spectra values belong to the set{0,±2^(n/2),±2^(n/2+1)},at the same time,we discuss the existence of sufficient conditions in the construction.Additionally,this paper presents a novel construction method for balanced single-output Boolean functions with even variables featuring a special five-valued spectral structure,whose Walsh spectra values are constrained to the set{0,±2^(n/2),±3·2^(n/2)}.These functions provide new canonical examples for the study of Boolean function spectral theory.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The p...A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.展开更多
构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构...构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。展开更多
基金National Natural Science Foundation of China(62272360)。
文摘Five-valued Boolean functions play an important role in the design of symmetric cryptography.While the design and properties of single-output almost optimal five-valued spectra Boolean functions have been extensively studied over the past few decades,there has been limited research on the construction of almost optimal five-valued spectra vectorial Boolean functions.In this paper,we present a construction method for even-variable 2-output almost optimal five-valued spectra balanced Boolean functions,whose Walsh spectra values belong to the set{0,±2^(n/2),±2^(n/2+1)},at the same time,we discuss the existence of sufficient conditions in the construction.Additionally,this paper presents a novel construction method for balanced single-output Boolean functions with even variables featuring a special five-valued spectral structure,whose Walsh spectra values are constrained to the set{0,±2^(n/2),±3·2^(n/2)}.These functions provide new canonical examples for the study of Boolean function spectral theory.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20200039)the Special Fund Project of“Mount Taishan Scholars”Construction Project in Shandong Province(ts20081130).
文摘A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%.
文摘构造一种适用于反向传播(backpropagation,BP)神经网络的新型激活函数Lfun(logarithmic series function),并使用基于该函数的BP神经网络进行机床能耗状态的预测。首先,分析Sigmoid系列和ReLU系列激活函数的特点和缺陷,结合对数函数,构造了一种非线性分段含参数激活函数。该函数可导且光滑、导数形式简单、单调递增、输出均值为零,且通过可变参数使函数形式更灵活;其次,通过数值仿真实验在公共数据集上将Lfun函数与Sigmoid、ReLU、tanh、Leaky_ReLU和ELU函数的性能进行对比;最后,使用基于Lfun函数的BP神经网络进行机床能耗状态的预测。实验结果表明,使用Lfun函数的BP神经网络相较于使用其他几种常用激活函数的网络具有更好的性能。