The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinatio...The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.展开更多
为降低高速列车受电弓气动噪声,采用大涡模拟(Large Eddy Simulation,LES)和FW-H(Ffowcs Williams and Hawkings)声类比方法,在对空气流动及表面声辐射影响较大的原型受电弓圆形上下臂杆及绝缘子立柱进行尖椭圆化改型设计基础上,采用三...为降低高速列车受电弓气动噪声,采用大涡模拟(Large Eddy Simulation,LES)和FW-H(Ffowcs Williams and Hawkings)声类比方法,在对空气流动及表面声辐射影响较大的原型受电弓圆形上下臂杆及绝缘子立柱进行尖椭圆化改型设计基础上,采用三维流体分析软件STAR-CCM+对不同形状杆件受电弓进行流场特征和气动噪声数值模拟,并与原型受电弓进行对比。结果表明:受电弓远场辐射噪声主要集中在弓头、上下臂杆、底架及绝缘子等部位,尖椭圆化设计使受电弓上下臂杆和绝缘子迎流面压力减小,受电弓表面及周围流场的压力波动减弱,这是由于气流撞击受电弓形成的大尺度涡旋沿纵向方向发展破碎形成更小尺度的涡旋结构,进而降低了受电弓气动噪声;尖椭圆形状的改型受电弓较原型受电弓在横向、纵向方向均有气动降噪效果,时速350和400 km条件下改型受电弓纵向方向25 m处可分别降噪5.1和2.4 dB,降幅分别为6.7%和3.0%。研究结果可为设计制造新型低噪声高速列车受电弓提供基本数据支撑。展开更多
基金Project(20976095) supported by the National Natural Science Foundation of ChinaProject(2012CB215500) supported by the National Basic Research Program of China+1 种基金Project(20090002110074) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProjects(2012AA1106012, 2012AA053402) supported by the National Hi-tech Research and Development Program of China
文摘The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.
文摘为降低高速列车受电弓气动噪声,采用大涡模拟(Large Eddy Simulation,LES)和FW-H(Ffowcs Williams and Hawkings)声类比方法,在对空气流动及表面声辐射影响较大的原型受电弓圆形上下臂杆及绝缘子立柱进行尖椭圆化改型设计基础上,采用三维流体分析软件STAR-CCM+对不同形状杆件受电弓进行流场特征和气动噪声数值模拟,并与原型受电弓进行对比。结果表明:受电弓远场辐射噪声主要集中在弓头、上下臂杆、底架及绝缘子等部位,尖椭圆化设计使受电弓上下臂杆和绝缘子迎流面压力减小,受电弓表面及周围流场的压力波动减弱,这是由于气流撞击受电弓形成的大尺度涡旋沿纵向方向发展破碎形成更小尺度的涡旋结构,进而降低了受电弓气动噪声;尖椭圆形状的改型受电弓较原型受电弓在横向、纵向方向均有气动降噪效果,时速350和400 km条件下改型受电弓纵向方向25 m处可分别降噪5.1和2.4 dB,降幅分别为6.7%和3.0%。研究结果可为设计制造新型低噪声高速列车受电弓提供基本数据支撑。