期刊文献+
共找到3,701篇文章
< 1 2 186 >
每页显示 20 50 100
基于TimeGAN-GRU的镍镉蓄电池RUL预测 被引量:2
1
作者 于天剑 杨雨萌 +3 位作者 刘海涛 伍珣 代毅 向超群 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第12期4899-4909,共11页
镍镉蓄电池广泛用作我国高速列车的辅助电源,其性能可靠性直接关系到高速列车行车安全。蓄电池剩余使用寿命是指其性能从当前状态退化至失效的时长或可充放电次数,是表征电池性能的重要指标。目前,高速列车镉镍蓄电池寿命模型受限于小... 镍镉蓄电池广泛用作我国高速列车的辅助电源,其性能可靠性直接关系到高速列车行车安全。蓄电池剩余使用寿命是指其性能从当前状态退化至失效的时长或可充放电次数,是表征电池性能的重要指标。目前,高速列车镉镍蓄电池寿命模型受限于小样本数据而存在精确性和泛化性差的问题。因此,从全新镍镉蓄电池寿命实验数据中提取电池退化特征,采取时序对抗生成网络对其进行增强从而提高数据规模和质量,并依据分类分数、预测分数、主成分分析、t-分布随机邻域嵌入分析方法对增强效果进行评价。其次,使用增强数据建立门控循环单元方法的高速列车镍镉蓄电池剩余使用寿命预测模型。最终,通过四级修镉镍蓄电池循环寿命实验数据进行不同预测起点验证,并对比时序对抗生成网络-门控循环单元融合模型、门控循环单元模型、长短期记忆模型的预测效果。研究结果表明:对于时序对抗生成网络数据增强效果,真实数据与模拟数据分布相近,平均绝对误差小,模拟数据质量较高;经四级修镍镉蓄电池数据验证的时序对抗生成网络-门控循环单元融合模型相比门控循环单元模型、长短期记忆模型,具有更高的泛化性能和预测精度。针对高速列车镍镉蓄电池在小样本数据限制下建立了具有较好精确性和泛化性的剩余寿命预测模型,为保障高速列车行车安全和优化制定检修方案提供了参考。 展开更多
关键词 蓄电池 镍镉蓄电池 剩余寿命预测 时序对抗生成网络 门控循环单元网络
在线阅读 下载PDF
A novel method for predicting breakthrough time of horizontal wells in bottom water reservoirs 被引量:2
2
作者 李立峰 岳湘安 +2 位作者 赵海龙 杨志国 张立娟 《Journal of Central South University》 SCIE EI CAS 2013年第12期3612-3619,共8页
Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionl... Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionless time were derived from 10 influencing factors of the problem by using dimensional analysis. Simulations of horizontal well in reservoir with bottom water were run to find the prediction correlation. A general and concise functional relationship for predicting breakthrough time was established based on simulation results and theoretical analysis. The breakthrough time of one conceptual model predicted by the correlation is very close to the result by Eclipse with less than 2% error. The practical breakthrough time of one well in Helder oilfield is 10 d, and the predicted results by the method is 11.2 d, which is more accurate than the analytical result. Case study indicates that the method could predict breakthrough time of horizontal well under different reservoir conditions accurately. For its university and ease of use, the method is suitable for quick prediction of breakthrough time. 展开更多
关键词 reservoirs with bottom water breakthrough time of horizontal well prediction method dimensional analysis numericalsimulation
在线阅读 下载PDF
Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse
3
作者 Mao Xinyi Chai Changchun +3 位作者 Li Fuxing Lin Haodong Zhao Tianlong Yang Yintang 《强激光与粒子束》 CAS CSCD 北大核心 2024年第10期44-52,共9页
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ... The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit. 展开更多
关键词 fast rising time electromagnetic pulse damage effect electrostatic discharge protection circuit damage location prediction
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:1
4
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 Transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于改进神经网络方法的继电保护设备健康状态预测方法 被引量:1
5
作者 杨畅 王洋 +2 位作者 张永伍 田琨 苏红 《中国测试》 北大核心 2025年第3期123-130,共8页
针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模... 针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模型、环境影响模型;其次,考虑到继电保护设备的负载是其老化故障的主因,提出负荷时空分布预测模型;第三,在上述模型的基础上,提出长短期记忆网络的继电保护设备健康状态预测模型;最后,以实际电网为例对所提方法进行验证,表明所提方法有效。 展开更多
关键词 继电保护设备 健康状态 预测 长短时记忆网络
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
6
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
7
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
8
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于Boltzmann时间函数的地表任意点沉陷动态预计 被引量:1
9
作者 徐良骥 孙志豪 +2 位作者 刘潇鹏 张坤 曹宗友 《煤炭学报》 北大核心 2025年第2期715-731,共17页
煤炭资源的地下开采会造成地表沉陷,对地表生态环境及建(构)筑物的安全使用造成一定威胁,在采前获知开采过程中的地表沉陷动态预计值,是进行开采沉陷区生态环境动态修复设计的重要基础,是该领域亟待解决的问题之一。为实现煤炭地下开采... 煤炭资源的地下开采会造成地表沉陷,对地表生态环境及建(构)筑物的安全使用造成一定威胁,在采前获知开采过程中的地表沉陷动态预计值,是进行开采沉陷区生态环境动态修复设计的重要基础,是该领域亟待解决的问题之一。为实现煤炭地下开采导致地表沉陷动态过程的准确预计,根据地表沉陷动态规律总结出理想时间函数模型的形态,据此引入Boltzmann时间函数模型,从下沉量、下沉速度、下沉加速度3个方面对该模型进行分析,发现其能够满足地表沉陷动态趋势;探究该时间函数模型各参数对模型图像的影响,确定其物理意义并分别定义为最终下沉量A、最大下沉速度出现时间t0、下沉急缓程度系数B,从而构建基于Boltzmann时间函数的动态预计模型参数体系;通过对单点实测下沉量进行拟合发现该模型拟合精度较传统动态预计模型更高,拟合优度R^(2)达到0.9988;对矿区地表监测点实测下沉量进行参数反演,根据反演结果建立了沉陷盆地内任意点动态预计参数与地表最大下沉量、回采速度及覆岩岩性系数的相关关系,给出了该模型各动态预计参数在地表任意点的计算方法,并利用收集的6个工作面数据验证其精度可靠;构建了融合Boltzmann时间函数与概率积分法的地表沉陷动态预计模型,可实现对沉陷盆地内任意点任意时间的地表沉陷预计;运用该预计模型求得多时期下沉量并对其进行精度验证,结果显示开采过程中的动态预计相对误差保持在6.0%以内,相对误差最小值为2.7%。 展开更多
关键词 开采沉陷 动态预计 Boltzmann时间函数 概率积分模型 下沉速度
在线阅读 下载PDF
融入股票论坛UGC时序特征的上市公司财务困境预测方法 被引量:1
10
作者 张玉 蒋翠清 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期387-394,共8页
股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市... 股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市公司财务困境预测方法。首先,针对用户评论和用户阅读中的时间序列信息,考虑情感特征时序性和互动信息时序性,采用门控循环网络(gated recurrent unit,GRU)模型,挖掘时间序列中的动态信息;其次,不同时间段下发生的事件对财务困境预测的影响程度不同,采用注意力机制聚合重大事件对财务困境预测的影响;最后,基于UGC时序特征,并结合财务特征对上市公司财务困境进行预测。研究表明,所提方法能够有效地提取并聚合时序特征,提高财务困境预测效果。 展开更多
关键词 股票论坛 时序特征 门控循环网络 注意力机制 财务困境预测
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
11
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
时间预测中的任务分解效应:未来边界和思维焦点的作用
12
作者 史滋福 夏笔奇 +3 位作者 刘欣 陈火红 靳紫阳 彭玲艺 《心理学报》 北大核心 2025年第2期207-217,共11页
为探讨任务分解对时间预测的影响究竟是扩张效应还是收缩效应,以458名大学生为参与者,基于计划谬误理论的扩展模型,通过3个实验予以考察。结果发现,任务分解与否条件下参与者的时间预测值存在显著差异;其次,当未来边界的时间范围较短时... 为探讨任务分解对时间预测的影响究竟是扩张效应还是收缩效应,以458名大学生为参与者,基于计划谬误理论的扩展模型,通过3个实验予以考察。结果发现,任务分解与否条件下参与者的时间预测值存在显著差异;其次,当未来边界的时间范围较短时,分解条件下参与者的时间预测值显著长于不分解,且关注计划在其中起部分中介作用;而当未来边界的时间范围较长时,分解条件下参与者的时间预测值边缘显著短于不分解,且关注障碍在其中起部分中介作用。这些结果表明,任务分解对时间预测存在影响,且该影响受到未来边界的时间范围的调节,即当未来边界的时间范围较短时,表现为任务分解的扩张效应;当未来边界的时间范围较长时,表现为任务分解的收缩效应。此外,当任务分解时,未来边界的时间范围可以通过思维焦点对时间预测产生影响。 展开更多
关键词 时间预测 任务分解 未来边界 思维焦点
在线阅读 下载PDF
智能车辆自适应轨迹跟踪控制方法研究
13
作者 张硕 李潇 +3 位作者 陈轶嵩 赵轩 余强 余曼 《汽车安全与节能学报》 北大核心 2025年第2期303-314,共12页
针对智能车辆在变速度和变路面附着系数工况时轨迹跟踪精度和操纵稳定性差的问题,设计了一种基于模型预测控制(MPC)的自适应轨迹跟踪控制方法。基于侧向力滑模观测器和魔术轮胎逆模型设计轮胎等效侧偏刚度估计方法,实时修正动力学模型参... 针对智能车辆在变速度和变路面附着系数工况时轨迹跟踪精度和操纵稳定性差的问题,设计了一种基于模型预测控制(MPC)的自适应轨迹跟踪控制方法。基于侧向力滑模观测器和魔术轮胎逆模型设计轮胎等效侧偏刚度估计方法,实时修正动力学模型参数;制定了兼顾路面附着系数和行驶车速的动态预测时域控制策略,建立了自适应MPC的轨迹跟踪控制器;通过Simulink-CarSim联合仿真验证在变附着系数路面变速双移线工况下该方法的有效性。结果表明:与传统MPC控制方法相比,该文设计的方法在高附着系数路面中高速变速行驶时,操纵稳定性得以改善,略微牺牲跟踪精度,平均横摆角速度能改善19.82%;在变附着系数路面低中速变速行驶时平均横向偏移量和平均横摆角速度分别降低了84.90%和46.23%,能够有效改善轨迹跟踪控制精度和操纵稳定性。 展开更多
关键词 轨迹跟踪 模型预测控制(MPC) 侧偏刚度估计 变预测时域
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
14
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于多尺度特征融合和时空注意力LSTM的台风云图预测研究
15
作者 程勇 钱坤 +5 位作者 王军 渠海峰 李伟 杨玲 韩晓东 刘敏 《海洋预报》 北大核心 2025年第2期89-98,共10页
现有深度学习方法在预测台风时没有考虑其特征内化损失问题,难以全面捕捉台风结构变化。为此,本文提出一种基于多尺度特征融合的时空注意力长短期记忆网络(MSTA-LSTM)方法。引入特征增强模块加强台风特征信息,通过跳跃连接缓解编解码过... 现有深度学习方法在预测台风时没有考虑其特征内化损失问题,难以全面捕捉台风结构变化。为此,本文提出一种基于多尺度特征融合的时空注意力长短期记忆网络(MSTA-LSTM)方法。引入特征增强模块加强台风特征信息,通过跳跃连接缓解编解码过程中的台风细节特征损失,同时在时空长短期记忆网络(ST-LSTM)单元中利用卷积块注意力模块优化信息传递,最后通过反卷积调整不同尺度的解码输出,融合后输出结果。使用“葵花8号”卫星获取的东亚—东南亚太平洋沿岸地区的台风云图数据集开展验证和消融实验,该数据集包含16个台风过程的训练集和3个台风过程的测试集。与其他网络相比,MSTA-LSTM网络的均方根误差、峰值信噪比和结构相似性指数指标分别为42.76、16.38和0.4817,有效提高了台风云图预测的准确性。 展开更多
关键词 时间序列预测 多尺度特征 时空长短期记忆网络 注意力机制
在线阅读 下载PDF
基于细粒度代码表示和特征融合的即时软件缺陷预测方法
16
作者 朱晓燕 王文格 +1 位作者 王嘉寅 张选平 《计算机科学》 北大核心 2025年第1期242-249,共8页
即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,... 即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,仅标出了变更行,而没有进行细粒度的标记。此外,现有的使用提交内容进行缺陷预测的方法,仅仅是把提交消息与变更代码的特征进行简单拼接,缺失了在特征空间上的深度对齐,这使得在提交消息质量参差不齐的情况下,会出现预测结果易受噪声干扰的情形,并且现有方法也未将领域专家设计的人工特征以及变更内容中的语义语法信息综合起来进行预测。为了解决上述问题,提出了一种基于细粒度代码表征和特征融合的即时软件缺陷预测方法。通过引入新的变更嵌入计算方法来在细粒度上表示变更代码。同时,引入特征对齐模块,降低提交消息中噪声对方法性能的影响。此外,使用神经网络从人工设计的特征中学习专业知识,充分利用现有特征进行预测。实验结果表明,相较于现有方法,该方法在3个性能指标上均有显著提升。 展开更多
关键词 即时软件缺陷预测 特征融合 软件工程 深度学习 代码表示
在线阅读 下载PDF
航空管路无扩口管接头寿命预测方法研究
17
作者 唐杰 孙茹 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期154-162,共9页
为提升对航空管路无扩口接头退化预测的精度和效率,提出一种基于时间卷积网络TCN(temporal convolutional network)和Transformer的特征融合模型(TT模型)。通过TCN模块提取增强后的特征信息,利用融合卷积Transformer模块进一步处理,在... 为提升对航空管路无扩口接头退化预测的精度和效率,提出一种基于时间卷积网络TCN(temporal convolutional network)和Transformer的特征融合模型(TT模型)。通过TCN模块提取增强后的特征信息,利用融合卷积Transformer模块进一步处理,在编码器末尾添加池化层以降低过拟合风险,最终通过全连接层得到预测结果。为验证TT模型的有效性,针对航空管路无扩口接头密封性能使用单向流固耦合方法完成泄漏率模型的建立并获取数据,利用数据集进行试验。结果表明,TT模型与CNN、RNN、LSTM和Transformer模型相比,预测误差分别减少3.53%、6.08%、1.63%和1.75%,有效提高了航空管路无扩口接头退化预测的准确性。 展开更多
关键词 时间序列预测 密封特性 TCN TRANSFORMER 寿命预测
在线阅读 下载PDF
山区双车道公路借道超车轨迹预测模型
18
作者 覃文文 彭栋梁 +4 位作者 戢晓峰 徐迎豪 李冰 李武 曾浩 《交通运输系统工程与信息》 北大核心 2025年第3期96-106,共11页
为提高山区双车道公路的车辆轨迹预测精度,本文设计一种考虑借道超车影响的车辆轨迹预测模型。首先,基于无人机视频轨迹数据,根据航向角将借道超车过程划分为跟驰、借道、超车和返回这4种状态;其次,构建包含借道超车状态、车辆运动特征... 为提高山区双车道公路的车辆轨迹预测精度,本文设计一种考虑借道超车影响的车辆轨迹预测模型。首先,基于无人机视频轨迹数据,根据航向角将借道超车过程划分为跟驰、借道、超车和返回这4种状态;其次,构建包含借道超车状态、车辆运动特征、空间位置属性和交通状态的多元特征数据集,通过梯度提升决策树算法拟合借道超车状态与车辆运动特征、空间位置和交通状态之间的复杂关系,采用SHAP(SHapley Additive exPlanations)方法识别影响借道超车状态变化的关键因素;然后,将借道超车状态、影响借道超车状态的关键因素和历史轨迹数据集,以滑动时间窗口形式输入至Informer模型,预测山区双车道公路的借道超车轨迹;最后,与未考虑借道超车影响的传统超车轨迹预测模型进行对比,验证本文模型的有效性。结果表明:车头时距、主体车辆横向速度和横向偏移是影响借道超车状态变化的关键因素;所构建的模型在山区双车道借道超车场景下,具有良好的适用性和预测精度;与未考虑借道超车影响的轨迹预测模型相比,本文模型的均方误差和平均绝对误差均值分别降低53.05%和38.11%,决定系数均值提升23.58%。 展开更多
关键词 交通工程 超车轨迹预测 Informer时间序列模型 借道超车 山区双车道
在线阅读 下载PDF
基于分层模型预测控制的含风电电力系统恢复在线决策方法
19
作者 顾雪平 魏佳俊 +2 位作者 白岩松 李少岩 刘玉田 《电工技术学报》 北大核心 2025年第5期1471-1486,共16页
在“双碳”背景下,电力系统的风电渗透率不断提升,风电机组对大停电后系统恢复过程的影响日益显著。为应对风电出力不确定性对恢复过程的影响,该文提出了一种基于分层模型预测控制的电力系统恢复在线决策方法。首先,为满足不同的恢复决... 在“双碳”背景下,电力系统的风电渗透率不断提升,风电机组对大停电后系统恢复过程的影响日益显著。为应对风电出力不确定性对恢复过程的影响,该文提出了一种基于分层模型预测控制的电力系统恢复在线决策方法。首先,为满足不同的恢复决策需求,引入分层控制结构,将恢复任务解耦,以动态更新的风电预测信息为基础,提出基于两种滚动机制的双层滚动优化策略:上层考虑元件恢复次序的后效性,采用前瞻到底滚动机制进行元件恢复次序决策;下层考虑风电预测精度近高远低的实际,采用滑动时间窗口滚动机制进行发电机组出力计划和负荷恢复计划决策。然后,在反馈校正环节,根据实测风电数据,建立储能等灵活性资源的实时调度模型并修正风电功率预测。最后,通过修改的新英格兰39节点系统和实际系统算例验证所提方法的有效性与实用性。 展开更多
关键词 模型预测控制 大停电 风电不确定性 滚动机制 在线恢复 实时校正
在线阅读 下载PDF
利用地理空间和时间信息GNN-Transformer在MJO预测中的应用
20
作者 魏晓辉 徐哲文 +2 位作者 王兴旺 郝介云 刘长征 《吉林大学学报(理学版)》 北大核心 2025年第1期67-75,共9页
针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题,提出一种基于动态图神经网络与Transformer结合的时序预测模型.首先,将地球海陆二维网格映射到图结构的节点上,并提出利用多重注意力混合海陆掩码的方... 针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题,提出一种基于动态图神经网络与Transformer结合的时序预测模型.首先,将地球海陆二维网格映射到图结构的节点上,并提出利用多重注意力混合海陆掩码的方法进行节点筛选;其次,使用基于热传导与节点相似度度量进行边权重的迭代更新,以获取每个时间步中最准确的气候模式信息;再次,使用最大极值法抽取不同时间段的异常节点信息作为极端气候的发生点,并对这类点的变权重进行强化;最后,将上述结果输入到图神经网络进行编码,并使用Transformer进行解码操作获取预测结果.实验结果表明,该模型在预测中最高可获得39 d的双变量相关系数(COR)有效预测值,以及31 d的均方根误差(RMSE)有效预测值,性能优于现有模型. 展开更多
关键词 时空预测 图神经网络 天气预测 时间序列预测
在线阅读 下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部