The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at...Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.展开更多
Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage ...Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.展开更多
The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedfo...The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.展开更多
When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of...When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金the National Natural Science Foundation of China under Grant(42274119)the Liaoning Revitalization Talents Program under Grant(XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.
基金Project(61563032)supported by the National Natural Science Foundation of ChinaProject(18JR3RA133)supported by Gansu Basic Research Innovation Group,China
文摘Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.
文摘When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The gtobel convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.
基金Supported by National Natural Science Foundation of P.R.China(60474038)Science Research Foundation of Beijing Jiaotong University(2005SM005)Specialized Research Fund for the Doctoral Program of Higher Education(20060004002)
基金Supported by National Natural Science Foundation of China (10771101) and Science Research and Development Foundation of Changchun University of Technology (2008A29)