In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the q...In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.展开更多
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper...The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimizat...Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm.The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov...The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.展开更多
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied....The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.展开更多
A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controlle...A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.展开更多
In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have ei...In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have either high computational complexity or relatively poor performance. Delay scheduling is a constraint optimization problem with non-deterministic polynomial( NP) hard feathers. In this paper,we proposed an immune algorithm-based suboptimal method to solve the problem. Suitable immune operators have been designed such as encoding,clone,mutation and selection. The simulation results show that the proposed algorithm yields near-optimal performance and operates with much lower computational complexity.展开更多
In parallel-batching machine scheduling, all jobs in a batch start and complete at the same time, and the processing time of the batch is the maximum processing time of any job in it. For the unbounded parallel-batchi...In parallel-batching machine scheduling, all jobs in a batch start and complete at the same time, and the processing time of the batch is the maximum processing time of any job in it. For the unbounded parallel-batching machine scheduling problem of minimizing the maximum lateness, denoted 1|p-batch|L_(max), a dynamic programming algorithm with time complexity O(n^2) is well known in the literature.Later, this algorithm is improved to be an O(n log n) algorithm. In this note, we present another O(n log n) algorithm with simplifications on data structure and implementation details.展开更多
This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for ge...This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.展开更多
We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in log...We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in logistics and delivery system. The integrated and optimized model is based on our previous research result-effective space method. An integrated algorithm suitable for the integrated and optimized model was proposed and corresponding computer programs were designed to solve practical problems. The results indicates the programs can work out optimized delivery routes and concrete loading projects. The model and algorithm have many virtues and are valuable in practice.展开更多
No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic al...No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.展开更多
An assembly type flowshop scheduling problem with minimizing makespan is considered in this paper. The problem of scheduling for minimizing makespan is first addressed, and then a new heuristic algorithm is proposed ...An assembly type flowshop scheduling problem with minimizing makespan is considered in this paper. The problem of scheduling for minimizing makespan is first addressed, and then a new heuristic algorithm is proposed for it.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
In this paper,attention is paid to study an algorithm for the common due datetotal weighted tardiness problem of single machine scheduling. Anapproximation alsorithm is given. It performs well in the sense of worst-ca...In this paper,attention is paid to study an algorithm for the common due datetotal weighted tardiness problem of single machine scheduling. Anapproximation alsorithm is given. It performs well in the sense of worst-casebehaviour and its worst-case performance ratio is 2.展开更多
The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse ...The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.展开更多
The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec...The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.展开更多
基金supported by ZTE Industry-University-Institute Cooperation Funds。
文摘In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.
文摘The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金supported by the National Natural Science Foundation of China(No.61079013)the Natural Science Fund Project in Jiangsu Province(No.BK2011737)
文摘Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm.The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金the financial support of the National Natural Science Foundation of China(No.52102453)。
文摘The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the National Natural Science Foundation of China(No.51805253)the Fundamental Research Funds for the Central Universities(No. NP2020304)
文摘The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness.
文摘A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.
基金Supported by the National Natural Science Foundation of China(U1504613,U1504602)the Research Foundation for the Doctoral Program of China(2015M582622)
文摘In cognitive radio networks,delay scheduling optimization has attracted an increasing attention in recent years. Numerous researches have been performed on it with different scenarios. However,these approaches have either high computational complexity or relatively poor performance. Delay scheduling is a constraint optimization problem with non-deterministic polynomial( NP) hard feathers. In this paper,we proposed an immune algorithm-based suboptimal method to solve the problem. Suitable immune operators have been designed such as encoding,clone,mutation and selection. The simulation results show that the proposed algorithm yields near-optimal performance and operates with much lower computational complexity.
基金Supported by NSFC(11571323 11201121)+1 种基金NSFSTDOHN(162300410221)NSFEDOHN(2013GGJS-079)
文摘In parallel-batching machine scheduling, all jobs in a batch start and complete at the same time, and the processing time of the batch is the maximum processing time of any job in it. For the unbounded parallel-batching machine scheduling problem of minimizing the maximum lateness, denoted 1|p-batch|L_(max), a dynamic programming algorithm with time complexity O(n^2) is well known in the literature.Later, this algorithm is improved to be an O(n log n) algorithm. In this note, we present another O(n log n) algorithm with simplifications on data structure and implementation details.
文摘This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.
基金the Natural Science Foundation of China (No. 70572028).
文摘We established an integrated and optimized model of vehicle scheduling problem and vehicle filling problem for solving an extremely complex delivery mode-multi-type vehicles, non-full loads, pickup and delivery in logistics and delivery system. The integrated and optimized model is based on our previous research result-effective space method. An integrated algorithm suitable for the integrated and optimized model was proposed and corresponding computer programs were designed to solve practical problems. The results indicates the programs can work out optimized delivery routes and concrete loading projects. The model and algorithm have many virtues and are valuable in practice.
基金Project 60304016 supported by the National Natural Science Foundation of China
文摘No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.
文摘An assembly type flowshop scheduling problem with minimizing makespan is considered in this paper. The problem of scheduling for minimizing makespan is first addressed, and then a new heuristic algorithm is proposed for it.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
文摘In this paper,attention is paid to study an algorithm for the common due datetotal weighted tardiness problem of single machine scheduling. Anapproximation alsorithm is given. It performs well in the sense of worst-casebehaviour and its worst-case performance ratio is 2.
文摘The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.
文摘The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.