期刊文献+
共找到1,077篇文章
< 1 2 54 >
每页显示 20 50 100
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
1
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
Satellite fault diagnosis method based on predictive filter and empirical mode decomposition 被引量:9
2
作者 Yi Shen Yingchun Zhang Zhenhua Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期83-87,共5页
A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by n... A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by noise.Then the EMD method is introduced to decompose the fault estimation into a finite number of intrinsic mode functions and extract the trend of faults for fault diagnosis.The proposed scheme has the ability of diagnosing both abrupt and incipient faults of the actuator in a satellite attitude control subsystem.A mathematical simulation is given to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 satellite fault diagnosis predictive filter empirical mode decomposition(emd).
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
3
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(emd) Ensemble emd(Eemd) Complete Eemd with adaptive noise(CEemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition 被引量:9
4
作者 LI Fan XIONG Jiajun +2 位作者 LAN Xuhui BI Hongkui CHEN Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期103-117,共15页
Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyz... Aiming at the problem of gliding near space hypersonic vehicle(NSHV)trajectory prediction,a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition(EMD)is proposed.The method analyzes the motion characteristics of the skipping gliding NSHV and verifies that the aerodynamic acceleration of the target has a relatively stable rule.On this basis,EMD is used to extract the trend of aerodynamic acceleration into multiple sub-items,and aggregate sub-items with similar attributes.Then,a prior basis function is set according to the aerodynamic acceleration stability rule,and the aggregated data are fitted by the basis function to predict its future state.After that,the prediction data of the aerodynamic acceleration are used to drive the system to predict the target trajectory.Finally,experiments verify the effectiveness of the method.In addition,the distribution of prediction errors in space is discussed,and the reasons are analyzed. 展开更多
关键词 hypersonic vehicle trajectory prediction empirical mode decomposition(emd) aerodynamic acceleration
在线阅读 下载PDF
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别 被引量:2
5
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
在线阅读 下载PDF
基于EMD和FFT的自适应X射线脉冲星信号降噪方法 被引量:1
6
作者 王璐 张爽 《电波科学学报》 北大核心 2025年第2期381-394,共14页
X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节... X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节信息,一直是X射线脉冲星信号降噪处理中的难点。在经验模态分解(empirical mode decomposition,EMD)阈值降噪中,混叠内蕴模态分量的个数、阈值函数和阈值是影响降噪效果的三个主要因素。本文利用快速傅里叶变换对混叠内蕴模态分量进行分析,据其频域稀疏度筛选出含噪声的高频混叠内蕴模态分量;针对阈值函数和阈值的选择问题,提出了利用复合评价指标选择出阈值函数和阈值估计方法的最优组合,并通过数值仿真验证了该方法的有效性。仿真和测试结果表明本文方法在脉冲星导航方面可能具有应用前景。 展开更多
关键词 脉冲星 经验模态分解(emd) 快速傅里叶变换(FFT) 复合评价指标(CEI) 信号降噪
在线阅读 下载PDF
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:2
7
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(Eemd) 曲轴瞬时转速 特征提取 本征模态函数(IMFs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法 被引量:1
8
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
基于IDBO-TVFEMD与改进小波阈值函数的滚动轴承复合故障诊断方法
9
作者 别锋锋 张雨婷 +4 位作者 李倩倩 丁学平 彭光成 戴雨萱 张瀚阳 《机械强度》 北大核心 2025年第10期51-62,共12页
针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD... 针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer,IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decomposition,TVFEMD)与新型小波阈值函数去噪相结合的故障诊断方法。首先,运用IDBO对TVFEMD中B样条阶数和带宽阈值ξ进行迭代寻优,得出最佳参数组合,然后,对原始信号进行TVFEMD,得到各本征模态函数(Intrinsic Mode Function,IMF)分量,通过相关系数准则去除其中的无关分量,重构新信号。随后,运用改进的小波阈值函数对新信号进行二次去噪处理。最后,对处理完的信号进行包络谱分析,提取其故障特征频率。通过仿真模拟信号与故障模拟试验分析研究,实现IDBOTVFEMD与改进小波阈值函数相结合的故障诊断方法和经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、完全集合经验模态分解去噪(Complete EEMD with Adaptive Noise,CEEMDAN)方法的对比,研究结果表明,提出的算法模型具备更好的诊断效果。 展开更多
关键词 滚动轴承 时变滤波经验模态分解 蜣螂优化器算法 小波阈值函数
在线阅读 下载PDF
基于EMD-VMD的混合储能系统容量优化配置
10
作者 周登涛 金福宝 +4 位作者 马山刚 祁延明 张强 赵瑞婷 李若冰 《科学技术与工程》 北大核心 2025年第19期8090-8098,共9页
为解决并网过程中,风电功率波动、间隙性等影响电网稳定运行的问题,提出一种利用经验模态分解(empirical mode decomposition,EMD)和变分模态分解(variational mode decomposition,VMD)结合的飞轮-锂电混合储能系统的容量优化配置方案... 为解决并网过程中,风电功率波动、间隙性等影响电网稳定运行的问题,提出一种利用经验模态分解(empirical mode decomposition,EMD)和变分模态分解(variational mode decomposition,VMD)结合的飞轮-锂电混合储能系统的容量优化配置方案。首先,采用K均值算法得到典型日数据,通过EMD将风电典型日数据输出功率信号分解为满足波动量限值的并网功率和混合储能平抑功率;然后,由麻雀搜索算法完成VMD算法中分解模态个数K值和二次惩罚因子α值的优化,通过VMD分解混合储能平抑功率,完成锂电池和飞轮储能的合理分配。最后,在考虑储能充放电功率和荷电状态约束条件的前提下,以储能成本为目标函数构建经济模型,采用青海省海南州共和县切吉敦曲风电场实际发电数据借助MATLAB平台进行仿真计算。结果表明:所提策略不仅有效地平抑了风电波动,还提高了整个系统的经济性。 展开更多
关键词 混合储能 经验模态分解 麻雀搜索算法 变分模态分解 容量优化配置
在线阅读 下载PDF
基于改进EMD的爆破振动信号降噪方法研究 被引量:3
11
作者 闫鹏 张云鹏 +1 位作者 周倩倩 杨曦 《振动与冲击》 北大核心 2025年第1期212-220,共9页
针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类... 针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类特性以及小波包的降噪优势,不仅可以有效抑制端点效应,也具有良好的降噪效果。研究结果表明:在仿真信号端点效应抑制试验中,与多项式拟合和边界局部特征延拓方法相比,改进EMD方法的能量误差和均方误差最小。在实测爆破振动信号降噪中,与EMD和变分模态分解(VMD)方法相比,改进EMD方法的信噪比(20.94 dB)最大,均方根误差(0.0031)最小。改进EMD方法不仅可以较好保存中低频(0~200 Hz)信号能量,对200 Hz以上高频噪声也具有良好滤除效果。 展开更多
关键词 经验模态分解(emd) 爆破振动信号 端点效应 K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于优化的EMD-LSTM的土石坝沉降预测模型研究
12
作者 李宗淇 姚成林 赵文波 《水利水电技术(中英文)》 北大核心 2025年第S1期272-281,共10页
针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS... 针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS)测点的时间序列数据进行多尺度分解,提取趋势和周期成分。然后,利用主成分分析(PCA)筛选关键影响因子,减少数据维度,提高模型的泛化能力。最后,采用LSTM构建时间序列模型,并通过鲸鱼优化算法(WOA)优化LSTM的超参数,以提升模型的预测精度和收敛速度。实验结果表明,该模型在土石坝沉降预测中具有显著的优势,均方误差(MSE)为7.070 1,平均绝对误差(MAE)为1.885 9,拟合优度(R2)为99.83%。与传统方法相比,该模型在降噪、特征捕捉和超参数优化等方面均有明显提升,可为土石坝沉降提供可靠的预测方案。 展开更多
关键词 土石坝 沉降预测 模型 经验模态分解(emd) 长短期记忆神经网络(LSTM)
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
13
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition emd) 数据差分处理(data differential processing) 长短期记忆(long short-term memory LSTM)
在线阅读 下载PDF
基于ICEEMDAN算法的高速双圆弧斜齿轮泵振动试验特性分析
14
作者 董庆伟 李博 +2 位作者 李阁强 韩帅康 皇甫科维 《机床与液压》 北大核心 2025年第4期151-157,共7页
针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分... 针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分析。在此基础上,基于增强型完全集合经验模态分解(ICEEMDAN)算法对数据进行特征提取,通过模糊熵与峭度构建的综合指标选取内在模态函数分量(IMF)进行分析,得到双圆弧斜齿轮泵在不同转速和压力负载工况下的振动特性。结果表明:在所测工况下,出油口区域的振动幅度普遍高于进油口和泵体上侧区域,而且压力负载对泵的振动分布具有一定影响;在恒定压力负载下,泵的振动幅值随转速的提高而增加,且这种增长随转速的提高而加剧;在恒定转速下,泵的振动幅度整体趋势随着压力负载的增加而上升,但在特定压力负载点出现下降。 展开更多
关键词 斜齿轮泵 高速工况 振动特性 增强型完全集合经验模态分解(ICEemdAN)算法
在线阅读 下载PDF
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:2
15
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于EEMD和GP的混合直流系统双端保护方案研究
16
作者 武传健 梁正堂 +2 位作者 黄强 张晓东 张大海 《智慧电力》 北大核心 2025年第1期98-106,共9页
为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算... 为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算法表达混合直流系统暂态电流的频域相似性特征,以两侧暂态电流关联维数的差异性建立保护判据;最后,搭建模型并验证基于关联维数的双端保护方案的正确性、可靠性和优越性。结果表明,所提方案可在较强干扰下可靠识别故障区域。 展开更多
关键词 混合直流系统 集合经验模态分解 GP算法 双端保护
在线阅读 下载PDF
基于CEEMDAN-CPO-VMD的RV减速器故障诊断模型
17
作者 郭曼 徐建 蔺梦雄 《机电工程》 北大核心 2025年第8期1490-1501,共12页
针对强背景噪声下旋转矢量(RV)减速器故障诊断困难的问题,提出了一种自适应噪声完备集合经验模态分解(CEEMDAN)结合冠豪猪算法(CPO)优化变分模态分解(VMD)的RV减速器故障诊断方法。首先,利用自适应噪声完备集合经验模态分解对含噪声目... 针对强背景噪声下旋转矢量(RV)减速器故障诊断困难的问题,提出了一种自适应噪声完备集合经验模态分解(CEEMDAN)结合冠豪猪算法(CPO)优化变分模态分解(VMD)的RV减速器故障诊断方法。首先,利用自适应噪声完备集合经验模态分解对含噪声目标信号进行了降噪分解,得到了一系列固有模态分量(IMF),再根据峭度值原则,选取了目标模态分量;然后,以包络熵为适应性函数,利用CPO算法对变分模态分解中的分解参数K值和α值进行了寻优计算,得到了最后的[K,α]组合,并对VMD进行了最优参数设置;最后,分解后得到一系列本征模态函数分量,对分解后的目标分量进行了重构,再对重构后的目标分量进行包络谱分析并进行了故障诊断,为了验证CEEMDAN-CPO-VMD方法的优越性,进行了实验对比分析。研究结果表明:经CPO重构后的信号信噪比为9.38,均方根误差为0.036,计算时间为36.59 s;利用CEEMDAN-CPO-VMD方法有效地提取了RV减速器的故障特征;对比验证该方法的可行性,使用频谱包络分析得到的结果,有较多的边频干扰,不能有效地定位故障点;同时,对比麻雀搜索算法(SSA)优化的VMD,经SSA算法重构后的信号信噪比为8.57,均方根误差为0.042,计算时间为50.24 s,相比于SSA算法,CPO算法的信噪比结果提高了0.78 dB,均方根误差降低了0.006,迭代时间减少了13.65 s,有了更好的收敛性,验证了CEEMDAN-CPO-VMD法有更好的诊断效果。该研究成果可为强噪声干扰下的RV减速器故障诊断提供参考。 展开更多
关键词 旋转矢量减速器 变速器 自适应噪声完备集合经验模态分解 冠豪猪优化算法 变分模态分解 包络熵 故障分类识别方法
在线阅读 下载PDF
基于CEEMDAN与ISSA优化SVM的风电机组轴承故障诊断方法
18
作者 胡春祥 孟凡勇 +2 位作者 罗文江 周爽 许璇 《机械设计》 北大核心 2025年第4期109-119,共11页
风电机组轴承运行工况复杂多变,高效轴承故障诊断方法对确保风电机组安全稳定运行具有重要意义。文中针对风电机组轴承在强噪声背景下故障特征提取困难的问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和改进麻雀搜索算法(I... 风电机组轴承运行工况复杂多变,高效轴承故障诊断方法对确保风电机组安全稳定运行具有重要意义。文中针对风电机组轴承在强噪声背景下故障特征提取困难的问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和改进麻雀搜索算法(ISSA)优化支持向量机(SVM)相结合的风电机组轴承故障诊断方法。首先,利用CEEMDAN对轴承振动信息进行降噪和分解,得到多个本征模函数(IMF)分量,根据相关系数和峭度准则,筛选有效IMF分量进行信号重构并特征提取;其次,通过引入Sin混沌映射、自适应惯性权重及莱维(Levy)飞行策略对麻雀搜索算法(SSA)进行改进;最后,采用ISSA-SVM模型进行风电机组轴承故障的识别和诊断。研究结果表明:实际工程风电机组轴承故障识别准确率为95.8%,验证了所提方法的有效性和鲁棒性。 展开更多
关键词 自适应噪声完备集合经验模态分解 支持向量机 麻雀搜索算法 Sin混沌映射 自适应惯性权重
在线阅读 下载PDF
基于CEEMDAN-IASO-TCN组合模型的中长期径流预报 被引量:1
19
作者 徐军杨 罗远林 +3 位作者 刘月馨 陈冬强 张坚 张楚 《人民长江》 北大核心 2025年第4期128-135,共8页
准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月... 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月径流序列进行分解,然后利用IASO对TCN模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的IASO-TCN对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流域镇江关水文站1957~2019年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到0.9191和0.8691。研究成果可为水资源可持续利用提供可靠依据。 展开更多
关键词 中长期径流预报 自适应噪声完备集合经验模态分解 原子搜索算法 时间卷积网络 岷江流域
在线阅读 下载PDF
基于CEEMDAN的矿山微震信号特征提取和分类方法
20
作者 赵云锋 陈林林 +3 位作者 罗忠浩 蒲源源 尚雪义 黄文祥 《矿业安全与环保》 北大核心 2025年第2期105-112,120,共9页
为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态... 为获得有效的灾害前兆信息,微震事件分类是必要前提。针对岩体破裂信号与爆破振动信号自动识别准确率低的问题,提出了基于自适应噪声集合经验模态分解(CEEMDAN)的矿山微震信号特征提取及分类方法:采用CEEMDAN求取微震信号的多阶本征模态(IMF)分量,借助相关性系数筛选主分量,计算各主分量的方差贡献率和能量谱系数,以此作为分类学习的特征向量;利用鲸鱼算法(WOA)优化的卷积长短时记忆神经网络(WOA-CNN-LSTM)对岩体破裂和爆破振动信号进行分类。结果表明:CEEMDAN的主分量为PC1~PC8,随着分解层数的增加,岩体破裂信号的方差贡献率和能量谱系数平均值先增后减,而爆破振动信号呈下降趋势;与相关系数、方差贡献率相比,将特征向量能量谱系数作为WOA-CNN-LSTM、支持向量机(SVM)、BP神经网络3种方法的输入,分类准确率最高;WOA-CNN-LSTM的识别效果明显优于Bayes判别法、SVM和BP神经网络,且基于主分量能量谱系数的分类准确率达到了91.50%。 展开更多
关键词 微震信号分类 自适应噪声集合经验模态分解 鲸鱼算法 卷积长短时记忆神经网络
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部