To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th...To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.展开更多
In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis o...In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency.展开更多
基于科罗拉多矿业学院(Colorado School of Mines)推导的CSM受力模型,采用刀盘破岩比能最低原则,以径向不平衡力和倾覆力矩最小为目标,使用标准遗传算法(GA),优化中心刀、正刀和边缘滚刀的刀间距,以及正刀和边缘滚刀的极角.以TB880E刀...基于科罗拉多矿业学院(Colorado School of Mines)推导的CSM受力模型,采用刀盘破岩比能最低原则,以径向不平衡力和倾覆力矩最小为目标,使用标准遗传算法(GA),优化中心刀、正刀和边缘滚刀的刀间距,以及正刀和边缘滚刀的极角.以TB880E刀盘为实例计算,结果表明:优化中心刀和正刀区域的刀间距后,比能减少1.53%,优化边缘滚刀区域的刀间倾角后,比能减少了1.10%;优化正刀和边缘滚刀的极角后,径向不平衡力减少到0.126 5 N,倾覆力矩减少到0.759 1 N·m,从而减小了刀盘的变形量.该研究可用于刀盘的布刀优化设计和对破岩过程能耗的预测,可降低TBM破岩能耗,改善TBM掘进能力.展开更多
基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2012AA041803)supported by the National High-Technology Research and Development Program of China+2 种基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2015GK1029)supported by the Science and Technology Project of Strategic Emerging Industry in Hunan Province,ChinaProject(CX2017B048)supported by the Hunan Provincial Innovation Foundation For Postgraduate,China
文摘To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.
基金Projects(51274252,51074180)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China+1 种基金Projects(2012AA0418012012AA041803)supported by the High-Tech Research and Development Program of China
文摘In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency.
文摘基于科罗拉多矿业学院(Colorado School of Mines)推导的CSM受力模型,采用刀盘破岩比能最低原则,以径向不平衡力和倾覆力矩最小为目标,使用标准遗传算法(GA),优化中心刀、正刀和边缘滚刀的刀间距,以及正刀和边缘滚刀的极角.以TB880E刀盘为实例计算,结果表明:优化中心刀和正刀区域的刀间距后,比能减少1.53%,优化边缘滚刀区域的刀间倾角后,比能减少了1.10%;优化正刀和边缘滚刀的极角后,径向不平衡力减少到0.126 5 N,倾覆力矩减少到0.759 1 N·m,从而减小了刀盘的变形量.该研究可用于刀盘的布刀优化设计和对破岩过程能耗的预测,可降低TBM破岩能耗,改善TBM掘进能力.