The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc...The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.展开更多
The catalytic conversion of methanol to dimethylether(DME)was studied over CuO/Al2O3,ZnO/Al2O3and ZnOCuO/Al2O3nanocatalysts prepared in presence or absence of ultrasonic irradiation.The catalysts were characterized by...The catalytic conversion of methanol to dimethylether(DME)was studied over CuO/Al2O3,ZnO/Al2O3and ZnOCuO/Al2O3nanocatalysts prepared in presence or absence of ultrasonic irradiation.The catalysts were characterized by X-ray diffraction(XRD),surface characterization method(BET),scanning electron microscope(SEM),H2-temperature programmed reduction(H2-TPR)and temperature programmed desorption of ammonia(NH3-TPD).The experimental results show that during catalytic dehydration of methanol to dimethylether,the activities of the CuO/Al2O3,ZnO/Al2O3and ZnO-CuO/Al2O3catalysts prepared using ultrasonic treatment are much higher than those prepared in absence of ultrasonication.SEM shows that the use of ultrasonication results in much smaller nanoparticles.BET and XRD show that the ultrasonication increases the surface area and pore volume of the catalysts.H2-TPR profiles indicated that reducibility of the sonicated nanocatalysts is carried out at lower temperatures.NH3-TPD shows that ultrasound irradiation has enhanced the acidity of the nanocatalyst and hence enhanced catalytic performance for DME formation.展开更多
针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cS...针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。展开更多
文摘The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.
文摘The catalytic conversion of methanol to dimethylether(DME)was studied over CuO/Al2O3,ZnO/Al2O3and ZnOCuO/Al2O3nanocatalysts prepared in presence or absence of ultrasonic irradiation.The catalysts were characterized by X-ray diffraction(XRD),surface characterization method(BET),scanning electron microscope(SEM),H2-temperature programmed reduction(H2-TPR)and temperature programmed desorption of ammonia(NH3-TPD).The experimental results show that during catalytic dehydration of methanol to dimethylether,the activities of the CuO/Al2O3,ZnO/Al2O3and ZnO-CuO/Al2O3catalysts prepared using ultrasonic treatment are much higher than those prepared in absence of ultrasonication.SEM shows that the use of ultrasonication results in much smaller nanoparticles.BET and XRD show that the ultrasonication increases the surface area and pore volume of the catalysts.H2-TPR profiles indicated that reducibility of the sonicated nanocatalysts is carried out at lower temperatures.NH3-TPD shows that ultrasound irradiation has enhanced the acidity of the nanocatalyst and hence enhanced catalytic performance for DME formation.
文摘针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。