Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea...Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响...接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。展开更多
文摘Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.
文摘接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。