期刊文献+

基于LSTM的Encoder-Decoder多步轨迹预测技术 被引量:6

Encoder-Decoder Multi-Step TrajectoryPrediction Technology Based on LSTM
在线阅读 下载PDF
导出
摘要 针对弱约束非合作目标的轨迹特性和运动特性,提出一种基于LSTM的Encoder-Decoder多步轨迹预测技术(EDMTP)。引入一阶差分处理,降低了轨迹数据的时间依赖性,得到了无趋势的轨迹。构造输入输出的轨迹数据对,将预测问题转化为有监督学习问题,研究多步预测过程中模型性能的变化,实现端到端的轨迹预测。仿真结果表明,该方法能够从历史轨迹数据中提取更多的轨迹特征,在多步轨迹预测中具有明显的优势。与KFTP和HMMTP算法相比,EDMTP的误差增长率分别同比下降了2.18%和3.52%,取得了较好的轨迹预测效果。 Aiming at the trajectory and motion characteristics of weakly constrained non-cooperative targets,a LSTM-based encoder-decoder multi-step trajectory prediction technology(EDMTP)is proposed.The introduction of first-order difference processing reduces the time dependence of the trajectory data,and obtains a trendless trajectory.Constructing an input and output trajectory data pair,transforming the prediction problem into a supervised learning problem,the change of model performance in the multi-step prediction process is studied to realize end-to-end trajectory prediction.Simulation results show that this method can extract more trajectory features from historical trajectory data,and has obvious advantages in multi-step trajectory prediction.Compared with the trajectory prediction algorithms of KFTP and HMMTP,the error growth rate of EDMTP decrease by 2.18%and 3.52%year-on-year,respectively,and achieves better trajectory prediction results.
作者 李青勇 何兵 张显炀 朱晓宇 刘刚 Li Qingyong;He Bing;Zhang Xianyang;Zhu Xiaoyu;Liu Gang(Rocket Force University of Engineering,Xi’an 710025,China)
机构地区 火箭军工程大学
出处 《航空兵器》 CSCD 北大核心 2021年第2期49-54,共6页 Aero Weaponry
基金 国家自然科学基金青年科学基金项目(61403399)。
关键词 轨迹预测 LSTM 编码器-解码器 监督学习 多步预测 trajectory prediction LSTM Encoder-Decoder supervised learning multi-step prediction
作者简介 李青勇(1995-),男,甘肃白银人,硕士,研究方向为轨迹分析、轨迹预测;通讯作者:何兵(1983-),男,陕西西安人,副教授,博士,研究方向为人工智能、数据分析、导航制导与控制。
  • 相关文献

参考文献11

二级参考文献42

  • 1王志刚,芮国胜,胡昊.UPF算法及其在目标跟踪中的应用[J].雷达科学与技术,2005,3(1):20-24. 被引量:12
  • 2李健,蒋宏,宋龙,任章.一种精确跟踪机动目标的非线性滤波算法[J].电光与控制,2006,13(2):3-7. 被引量:6
  • 3CHENG Y Z. MeanShift:Mode seeking and clustering [ J ]. lEE, E,Transactions on Pattern Analysis and Machine Intelligence,1995,17(8) :790-799.
  • 4YANG C J,DURAISWAMI R,DAVIS L. Similarity measure for nonparametric kernel density based object tracking[ C]// 18th Annual Conference on Neural Information Processing Systems, Victoria, British Columbia, Canada : NIPS, 2004:13 - 16.
  • 5COLLINS R T. MeanShift blob tracking through scale space [ J ]. IEEE, Computer Vision and Pattern Recognition ,2003, 2:234-240.
  • 6BRADSKI G R. Computer vision face tracking for use in a perceptual user infefface [ J ]. Intel Technology Journal, 1998,2(2) :1-15.
  • 7KALMAN R E. A new approach to linear filtering and prediction problems [ J]. Trans ASME Jour of Basic Engi- neering, 1960,82(2) :35-44.
  • 8ALLEN J G, XU R Y D, JIN JS. Object tracking using CamShift algorithm and multiple quantized feature spaces [ D ]. Sydney : University of Sydney,2006.
  • 9鲍奇兵.数字滤波和卡尔曼滤波[M].北京:科学出版社,1984.
  • 10COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid object using MeanShift [ J ]. Computer Vision and Pattern Recognition ,2000,2 : 140-150.

共引文献363

同被引文献66

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部