The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension cultur...The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension culture, different levels of concentration of retinoic acid and ascorbic acid were used to determine the optimal conditions for EB formation. The results showed that the optimal concentrations were 10.9 mol. L-1 and 0.1 mg. mL-1 for retinoic acid and ascorbic acids, respectively. 50% of EB which was significantly (p〈0.05) different from the control group developed to cardiomyocytes. In conclusion, rctinoic acid and ascorbic acid had strong ability to promote cardiomyocyte differentiation of mouse embryonic stem cells. 10-9 mol. L-1 retinoic acid and 0.10 mg. mL-1 ascorbic acids were recommended to induce differentiation of mouse ES ceUs toward cardiomyocytes.展开更多
Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together w...Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.展开更多
Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what trigger...Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what triggers ES cell展开更多
基金Supported by the Scientifi c Research Foundation for Doctors of Northeast Agricultural University(2012RCB27)Open Projects of Key Laboratory of Animal Genetics,Breeding and Reproduction,College of Heilongjiang Province(GXZDSYS-2012-07)
文摘The experiment was designed to study effects of retinoic acid and ascorbic acid on differentiation of mouse embryonic stem cells to cardiomyocytes. Embryonic bodies (EB) were developed from mESC in suspension culture, different levels of concentration of retinoic acid and ascorbic acid were used to determine the optimal conditions for EB formation. The results showed that the optimal concentrations were 10.9 mol. L-1 and 0.1 mg. mL-1 for retinoic acid and ascorbic acids, respectively. 50% of EB which was significantly (p〈0.05) different from the control group developed to cardiomyocytes. In conclusion, rctinoic acid and ascorbic acid had strong ability to promote cardiomyocyte differentiation of mouse embryonic stem cells. 10-9 mol. L-1 retinoic acid and 0.10 mg. mL-1 ascorbic acids were recommended to induce differentiation of mouse ES ceUs toward cardiomyocytes.
基金supported by funds from Huazhong University of Science and Technology,Wuhan,China
文摘Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.
文摘Embryonic stem (ES) cell biology is attracting much attention in cell biology because of their pluripotent behaviors and potential therapeutic applications. However,what maintains ES cell pluripotency and what triggers ES cell