“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic o...“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958owing to the name change of the university.展开更多
Background Cotton is an important crop providing the most natural fibers all over the world. The cotton genomics community has utilized whole genome sequencing data to construct an elite gene pool in which functional ...Background Cotton is an important crop providing the most natural fibers all over the world. The cotton genomics community has utilized whole genome sequencing data to construct an elite gene pool in which functional genes are related to agronomic traits. However, the functional validation of these genes is hindered by time-consuming and inefficient genetic transformation methods. Thus, establishing a transient transformation system of high efficiency is necessary for cotton genomics.Results To improve the efficiency of transient transformation, we used the protoplasts isolated from the etiolated cotyledon as recipient. The enzymatic digestion buffer comprised 1.5%(w/v) cellulase, 0.75%(w/v) macerozyme, and 1% hemicellulase, osmotically buffered with 0.4 mol·L^(-1) mannitol. After 5 h of dark incubation at 25℃, uniform cotton protoplasts were successfully isolated with a yield of 4.6 × 10^(6) protoplasts per gram(fresh weight) and 95% viability. We incubated 100 μL protoplasts(2.5 × 10^(5)·m L^(-1)) with 15 μg plasmid in the solution of 0.4 mol·L^(-1) mannitol and 40% PEG 4000 for 15 min, ultimately achieving an optimal transient transfection efficiency of 71.47%.Conclusions This transient system demonstrated effective utility in cellular biology research through successful applications in subcellular localization analyses, bimolecular fluorescence complementation(Bi FC) verification, and prime editing vector validation. Through systematic optimization, we established an efficient and expedited protoplast-based transient transformation system and successfully applied this platform to cotton functional genomics studies.展开更多
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo...The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.展开更多
Richard T.Le Gates,Frederic Stout编著自1996年第一次印刷以来,《The City Reader》英文版已经在2000、2003、2007、2011和2015年经过了6次修订和重印。作为一本城市研究、城市规划、城市地理学和城市社会学经典文献的集锦,《The City...Richard T.Le Gates,Frederic Stout编著自1996年第一次印刷以来,《The City Reader》英文版已经在2000、2003、2007、2011和2015年经过了6次修订和重印。作为一本城市研究、城市规划、城市地理学和城市社会学经典文献的集锦,《The City Reader》已经在北美、欧洲以及其他英语国家畅销了近20年;而如今,我们相关领域学者也都熟悉此书,在城市规划或城市研究类的推荐文献中都会将其列入。然而,展开更多
移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数...移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数据库服务器同步机制的研究,论述了复制及远程数据存取的编程思想,并通过示例给出程序实现方法。展开更多
Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that c...Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that can be differentiated from its epidermal cells in the outer integument of a developing seed.Fiber length,fiber strength,and fiber fineness are three main attributes that contribute to the quality of cotton fibers.Recent advancements in genomics have identified key genes,which are the most important factors that govern these three traits,can be introduced into cultivars of interest via gene editing,marker-assisted selection,and transgenics,thus the narrow genetic background of cotton can be addressed and its fiber quality traits can be enhanced.Over the past two decades,quantitative trait loci(QTLs)have been mapped for different fiber traits,approximately 1850 QTLs have been mapped for fiber length,fiber strength,and fineness among which a few genes have been edited for quality improvement in cotton.In this background,the current review covers the development and the factors that influence these traits,along with the reported genes,QTLs,and the edited genomes for trait improvement.展开更多
讨论了数据验证技术在Visual C++ EditBox上的实现,与通常的MFC实现方法相比,实现拓展了验证的项目,完成了动态条件验证、同步输入验证和多数据域的关系验证等功能.可广泛应用于交互性软件和大型数据库系统的客户端软件中.随着人们对软...讨论了数据验证技术在Visual C++ EditBox上的实现,与通常的MFC实现方法相比,实现拓展了验证的项目,完成了动态条件验证、同步输入验证和多数据域的关系验证等功能.可广泛应用于交互性软件和大型数据库系统的客户端软件中.随着人们对软件可靠性要求的不断提高,数据验证技术将得到进一步发展,相应的实现也将日趋完善.展开更多
It is thought through analysis that the problems of pre-diction for ore beneficiability have basic reg-ular decomposition pattern.Based on this,the inference control strategies and work principle of inference engine h...It is thought through analysis that the problems of pre-diction for ore beneficiability have basic reg-ular decomposition pattern.Based on this,the inference control strategies and work principle of inference engine have been stud-ied,and finally,a common use inference engine has been designed,which has the a-bility to solve the problems with regular de-composition pattern.4 graphs,4 refs.,1995,26(1):39~42.展开更多
"Journal of Jilin University(Science Edition)" is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Re..."Journal of Jilin University(Science Edition)" is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.展开更多
“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of Ch...“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of China.The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”,which was changed into“Acta Scientiarum Naturalium Universitatis Jilinensis”in 1958 owing to the name change of the university.The present journal name has been begun since the beginning of 2002 after a new Jilin University was set up,which comes from the amalgamation of the original Jilin University,Jilin University of Technology,Bethune Medicine University,Changchun University of Science and Technology and Changchun Post and Telecommunication Institute on June 12,2000.The domestic journal number is CN 22-1340/0,and the international journal number is ISSN 1671-5489.展开更多
“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of...“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”,which was changed into“Acta Scientiarum Naturalium Universitatis Jilinensis”in 1958 owing to the name change of the university.展开更多
“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic o...“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958 owing to the name change of the university.展开更多
文摘“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958owing to the name change of the university.
基金supported by Biological Breeding of Early Maturing and Disease Resistant Cotton Varieties (NO.2023ZD04041)the Project of China Agriculture Research System (Grant No. CARS-15-06)+2 种基金Natural Science Foundation of Henan Province (Grant No. 232300421041 and 222300420382)National Natural Science Foundation of China (Grant No. U21 A20213)the Central Public-interest Scientific Institution Basal Research Fund (Grant No. 1610162023017 and 1610162023028)。
文摘Background Cotton is an important crop providing the most natural fibers all over the world. The cotton genomics community has utilized whole genome sequencing data to construct an elite gene pool in which functional genes are related to agronomic traits. However, the functional validation of these genes is hindered by time-consuming and inefficient genetic transformation methods. Thus, establishing a transient transformation system of high efficiency is necessary for cotton genomics.Results To improve the efficiency of transient transformation, we used the protoplasts isolated from the etiolated cotyledon as recipient. The enzymatic digestion buffer comprised 1.5%(w/v) cellulase, 0.75%(w/v) macerozyme, and 1% hemicellulase, osmotically buffered with 0.4 mol·L^(-1) mannitol. After 5 h of dark incubation at 25℃, uniform cotton protoplasts were successfully isolated with a yield of 4.6 × 10^(6) protoplasts per gram(fresh weight) and 95% viability. We incubated 100 μL protoplasts(2.5 × 10^(5)·m L^(-1)) with 15 μg plasmid in the solution of 0.4 mol·L^(-1) mannitol and 40% PEG 4000 for 15 min, ultimately achieving an optimal transient transfection efficiency of 71.47%.Conclusions This transient system demonstrated effective utility in cellular biology research through successful applications in subcellular localization analyses, bimolecular fluorescence complementation(Bi FC) verification, and prime editing vector validation. Through systematic optimization, we established an efficient and expedited protoplast-based transient transformation system and successfully applied this platform to cotton functional genomics studies.
文摘The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.
文摘Richard T.Le Gates,Frederic Stout编著自1996年第一次印刷以来,《The City Reader》英文版已经在2000、2003、2007、2011和2015年经过了6次修订和重印。作为一本城市研究、城市规划、城市地理学和城市社会学经典文献的集锦,《The City Reader》已经在北美、欧洲以及其他英语国家畅销了近20年;而如今,我们相关领域学者也都熟悉此书,在城市规划或城市研究类的推荐文献中都会将其列入。然而,
文摘移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数据库服务器同步机制的研究,论述了复制及远程数据存取的编程思想,并通过示例给出程序实现方法。
文摘Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that can be differentiated from its epidermal cells in the outer integument of a developing seed.Fiber length,fiber strength,and fiber fineness are three main attributes that contribute to the quality of cotton fibers.Recent advancements in genomics have identified key genes,which are the most important factors that govern these three traits,can be introduced into cultivars of interest via gene editing,marker-assisted selection,and transgenics,thus the narrow genetic background of cotton can be addressed and its fiber quality traits can be enhanced.Over the past two decades,quantitative trait loci(QTLs)have been mapped for different fiber traits,approximately 1850 QTLs have been mapped for fiber length,fiber strength,and fineness among which a few genes have been edited for quality improvement in cotton.In this background,the current review covers the development and the factors that influence these traits,along with the reported genes,QTLs,and the edited genomes for trait improvement.
文摘讨论了数据验证技术在Visual C++ EditBox上的实现,与通常的MFC实现方法相比,实现拓展了验证的项目,完成了动态条件验证、同步输入验证和多数据域的关系验证等功能.可广泛应用于交互性软件和大型数据库系统的客户端软件中.随着人们对软件可靠性要求的不断提高,数据验证技术将得到进一步发展,相应的实现也将日趋完善.
文摘It is thought through analysis that the problems of pre-diction for ore beneficiability have basic reg-ular decomposition pattern.Based on this,the inference control strategies and work principle of inference engine have been stud-ied,and finally,a common use inference engine has been designed,which has the a-bility to solve the problems with regular de-composition pattern.4 graphs,4 refs.,1995,26(1):39~42.
文摘"Journal of Jilin University(Science Edition)" is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.
文摘“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of China.The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”,which was changed into“Acta Scientiarum Naturalium Universitatis Jilinensis”in 1958 owing to the name change of the university.The present journal name has been begun since the beginning of 2002 after a new Jilin University was set up,which comes from the amalgamation of the original Jilin University,Jilin University of Technology,Bethune Medicine University,Changchun University of Science and Technology and Changchun Post and Telecommunication Institute on June 12,2000.The domestic journal number is CN 22-1340/0,and the international journal number is ISSN 1671-5489.
文摘“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”,which was changed into“Acta Scientiarum Naturalium Universitatis Jilinensis”in 1958 owing to the name change of the university.
文摘“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958 owing to the name change of the university.