期刊文献+
共找到1,249篇文章
< 1 2 63 >
每页显示 20 50 100
Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex 被引量:5
1
作者 范勤勤 吕照民 +1 位作者 颜学峰 郭美锦 《Journal of Central South University》 SCIE EI CAS 2013年第4期950-959,共10页
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua... To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained. 展开更多
关键词 evolutionary computation dynamic optimization differential evolution algorithm Alopex algorithm self-adaptivity
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
2
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Immune response-based algorithm for optimization of dynamic environments
3
作者 史旭华 钱锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1563-1571,共9页
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu... A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments. 展开更多
关键词 dynamic optimization artificial immune algorithms immune response multi-scale variation
在线阅读 下载PDF
System optimization-oriented spare parts dynamic configuration model for multi-echelon multi-indenture system 被引量:9
4
作者 Minzhi Ruan Hua Li Jian Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期923-933,共11页
In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for reco... In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization. 展开更多
关键词 system optimization spare parts dynamic demand support effectiveness multi-echelon multi-indenture layered marginal algorithm
在线阅读 下载PDF
Linear Quadratic Optimal Control Based on Dynamic Compensation for Rectangular Descriptor Systems 被引量:7
5
作者 ZHANG Guo-Shan LIU Lei 《自动化学报》 EI CSCD 北大核心 2010年第12期1752-1757,共6页
关键词 自动化 线性二次方程 最优控制 动力补偿
在线阅读 下载PDF
Multi-population and diffusion UMDA for dynamic multimodal problems 被引量:3
6
作者 Yan Wu Yuping Wang +1 位作者 Xiaoxiong Liu Jimin Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期777-783,共7页
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor... In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly. 展开更多
关键词 univariate marginal distribution algorithm(UMDA) dynamic multimodal problems dynamic optimization multipopulation scheme.
在线阅读 下载PDF
Optimal Tracking Control for a Class of Unknown Discrete-time Systems with Actuator Saturation via Data-based ADP Algorithm 被引量:4
7
作者 SONG Rui-Zhuo XIAO Wen-Dong SUN Chang-Yin 《自动化学报》 EI CSCD 北大核心 2013年第9期1413-1420,共8页
为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍... 为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。 展开更多
关键词 最优跟踪控制 离散时间系统 饱和执行器 DP算法 控制方案 神经网络 性能指标 系统动力学
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
8
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划 被引量:1
9
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
融合组织P系统的自适应t分布蜣螂算法 被引量:1
10
作者 许家昌 江琳 苏树智 《计算机工程与应用》 北大核心 2025年第4期99-113,共15页
针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO)。设计... 针对原始蜣螂算法(dung beetle optimizer,DBO)易受自身影响,导致局部搜索和全局搜索不平衡,容易陷入局部最优的问题,提出一种结合组织膜的自适应t分布蜣螂算法(adaptive t-distribution DBO with tissue-like membrane,MC-TDBO)。设计自适应惯性因子改变繁育蜣螂和小偷蜣螂的步长,动态调节蜣螂个体的探索幅度,协调并优化算法的全局搜索和局部开发能力;引入鲸鱼算法改进觅食行为,促使种群向最优位置靠近,提高算法的计算精度;结合成功率和自适应t分布,提升算法跳出局部最优的能力;引入组织P系统与改进后的DBO算法结合,增强算法收敛效率。采用14个基准函数进行仿真测试,实验结果表明,MC-TDBO算法和原始DBO算法等四种算法相比,寻优速度、求解精度和稳定性均得到了显著提升。将MC-TDBO算法在阈值分割中进行应用测试,进一步验证其有效性。 展开更多
关键词 组织P系统 蜣螂算法 自适应t分布 动态惯性权重
在线阅读 下载PDF
基于动态区域划分的配电网台区三相不平衡治理策略
11
作者 陈晓龙 徐颖 李斌 《电力自动化设备》 北大核心 2025年第8期208-216,共9页
传统三相不平衡治理仅关注变压器关口处的三相不平衡情况,忽略了台区内部不平衡特征,且多采用静态调相策略,难以适应灵活源荷接入下低压配电网运行状态的动态变化。为此,提出了一种基于动态区域划分的三相不平衡治理策略。提出基于分区... 传统三相不平衡治理仅关注变压器关口处的三相不平衡情况,忽略了台区内部不平衡特征,且多采用静态调相策略,难以适应灵活源荷接入下低压配电网运行状态的动态变化。为此,提出了一种基于动态区域划分的三相不平衡治理策略。提出基于分区评价指数与阈值触发机制的动态分区方法,以划定后续相序优化的区域范围。建立考虑多类型灵活调节资源的双层优化模型,上层以各分区三相不平衡度最小为目标优化相序配置,下层构建以运行成本最小为目标的电压优化模型。采用基于云模型改进的遗传算法和Gurobi求解器分别求解上下层模型。基于改进的IEEE 123节点系统和0.38 kV实际配电网台区进行仿真,验证了所提策略的有效性与优越性。 展开更多
关键词 配电网 三相不平衡 动态分区 双层优化模型 相序优化 云模型 遗传算法
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
12
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
改进的矮猫鼬优化算法求解约束优化问题
13
作者 陈淼 崔倩倩 +1 位作者 赵秋丽 赵世杰 《计算机工程与应用》 北大核心 2025年第8期351-362,共12页
为提高矮猫鼬优化算法在求解约束优化问题的寻优性能,提出一种改进的矮猫鼬优化算法(D_PCDMO)。基于矮猫鼬的生活习性,修改算法中的窥视行为,以更好模拟矮猫鼬的觅食行为;提出一种候选解更新机制,以增强算法的勘探能力,提高算法寻优性能... 为提高矮猫鼬优化算法在求解约束优化问题的寻优性能,提出一种改进的矮猫鼬优化算法(D_PCDMO)。基于矮猫鼬的生活习性,修改算法中的窥视行为,以更好模拟矮猫鼬的觅食行为;提出一种候选解更新机制,以增强算法的勘探能力,提高算法寻优性能;构造一种新的动态惩罚因子,以提升求解约束优化问题的寻优能力。通过CEC2019基准测试函数和CEC2017约束优化基准测试函数与其他算法的数值对比及4个工程优化问题的求解,实验结果表明,相比于其他对比算法,D_PCDMO算法具有收敛精度高与收敛速度快等优势,且能有效地解决复杂的工程优化问题,具有较强的竞争力。 展开更多
关键词 约束优化 矮猫鼬优化算法 窥视行为 候选解更新机制 动态惩罚因子
在线阅读 下载PDF
考虑飞机除冰任务的除冰车路径规划模型研究
14
作者 徐一旻 王台玉冰 +2 位作者 吕伟 刘鸣秋 吴佳莉 《中国安全生产科学技术》 北大核心 2025年第8期181-188,共8页
为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综... 为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综合考虑障碍物动态分布、航班起飞优先级、除冰液有效时间窗、车辆容量限制等约束,构建多目标优化函数。其次,基于混合蚁群算法的全局寻优能力与A^(*)算法的局部路径优化特性,实现复杂环境下路径规划与避障的协同控制。实验基于真实机场脱敏地图构建仿真场景,划分20个区域并标注所有停机位坐标,验证了模型的有效性和鲁棒性。研究结果表明:该模型在确保航班时刻表约束的前提下,总行驶距离减少68%,航班延误时间减少90%,有效规避障碍物膨胀区边界的同时能动态调整多车辆协作路径。研究结果可为冻雨天气下机场除冰作业提供兼顾全局最优性与动态适应性的解决方案。 展开更多
关键词 路径规划 机场除冰车辆 动态调度 混合蚁群算法 多目标优化
在线阅读 下载PDF
原初引力波望远镜环境保护罩高度轴系结构方案及控制策略
15
作者 乐中宇 蒋粲奕 +3 位作者 徐进 邓壮壮 郑波 陈亮 《红外与激光工程》 北大核心 2025年第1期187-198,共12页
阿里原初引力波项目为保护望远镜提出了独特的环境保护罩方案,该研究针对该方案的高度轴系结构及控制策略展开。首先,根据望远镜运行模式对高度轴系进行运动及结构方案设计,建立系统的接触和摩擦模型,并进行动力学仿真。基于仿真结果提... 阿里原初引力波项目为保护望远镜提出了独特的环境保护罩方案,该研究针对该方案的高度轴系结构及控制策略展开。首先,根据望远镜运行模式对高度轴系进行运动及结构方案设计,建立系统的接触和摩擦模型,并进行动力学仿真。基于仿真结果提出基于目标位置的力矩补偿双电机控制策略,并为主动电机设计了基于SAPSO-BP策略的PID控制器。控制系统仿真结果表明,基于SAPSOBP的PID控制器在1°/s阶跃信号下,相对于调节时间相同的PSO-BP策略超调量减少了6%,且在一定扰动下能够更好地抑制峰值误差。通过对高度轴系统验证,该控制策略在1°/s及2°/s阶跃信号、梯形信号以及正弦信号下表现出了良好的跟随性能,并可以实现主从电机的协调分配与稳定运行,其速度跟踪误差均满足设计要求。 展开更多
关键词 环境保护罩高度轴系 多体动力学 双电机控制策略 BP-PID控制器 SAPSO优化算法
在线阅读 下载PDF
基于鲁棒优化的再制造作业车间动态调度模型与算法研究
16
作者 张帅 徐惠芬 +2 位作者 张文宇 毛灿 景鑫 《运筹与管理》 北大核心 2025年第4期113-119,I0048-I0056,共16页
针对具有柔性工艺规划的再制造作业车间多重不确定性和扰动事件影响的问题,提出了一种新的基于鲁棒优化的再制造作业车间动态调度模型,将再制造调度过程分为预调度阶段和动态调度阶段。预调度阶段采用离散场景集来描述再制造作业车间中... 针对具有柔性工艺规划的再制造作业车间多重不确定性和扰动事件影响的问题,提出了一种新的基于鲁棒优化的再制造作业车间动态调度模型,将再制造调度过程分为预调度阶段和动态调度阶段。预调度阶段采用离散场景集来描述再制造作业车间中的多重不确定性,并使用鲁棒优化方法来构建数学模型。动态调度阶段设计了一种混合型重调度策略,以避免扰动事件所导致的再制造系统效率降低的问题。在此基础上,提出了一种采用二维不等长编码方案的扩展型生物地理学优化算法,引入了正弦迁移模型并采用新的迁移算子和新的变异算子来引导种群进行高效迁移,还设计了一种局部搜索策略以提高算法性能。最后,通过仿真实验验证了上述模型和算法的有效性和优越性。 展开更多
关键词 再制造作业车间 预调度 动态调度 鲁棒优化 扰动事件 生物地理学优化算法
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
17
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
自适应动态分级平衡优化器算法及收敛性
18
作者 刘景森 高赛男 +1 位作者 李煜 周欢 《浙江大学学报(工学版)》 北大核心 2025年第11期2389-2399,共11页
为了解决平衡优化器(EO)算法在处理复杂优化问题时易陷入局部极值、寻优精度有时不佳的问题,提出高效的自适应动态分级平衡优化器CGTEO,对其收敛性进行理论和实验分析.引入基于正余弦系数的自适应交叉更新机制,增强种群多样性.加入动态... 为了解决平衡优化器(EO)算法在处理复杂优化问题时易陷入局部极值、寻优精度有时不佳的问题,提出高效的自适应动态分级平衡优化器CGTEO,对其收敛性进行理论和实验分析.引入基于正余弦系数的自适应交叉更新机制,增强种群多样性.加入动态分级搜索策略,平衡各子种群对探索和开发能力的不同需求.融合基于三角形拓扑单元的精英邻域学习策略,改善收敛精度并有效避免局部极值.通过概率测度法,证明了CGTEO算法的全局收敛性.采用CEC2017测试集,对CGTEO与9种代表性对比算法进行全面测试与对比分析,结合寻优精度、收敛曲线、Wilcoxon秩和检验及小提琴图等多种方法评估优化结果.实验结果表明,CGTEO算法在优化精度、收敛性能和稳定性方面均表现出色.Wilcoxon秩和检验表明,该算法的优化结果在统计上显著优于其他对比算法. 展开更多
关键词 平衡优化器算法 自适应交叉更新 动态分级搜索 精英邻域学习 收敛性分析 Wilcoxon秩和检验
在线阅读 下载PDF
基于决策空间分段预测的动态多目标优化策略
19
作者 李二超 刘辰淼 《济南大学学报(自然科学版)》 北大核心 2025年第5期693-705,718,共14页
为了快速、准确地追踪新环境下的Pareto解集,解决传统单一中心点预测不准确且产生的代表性精英个体数量少等问题,提出基于决策空间分段预测(SPDS)的动态多目标优化策略。首先,将前一时刻获取到的Pareto解集按照欧氏距离均匀分成3段,确... 为了快速、准确地追踪新环境下的Pareto解集,解决传统单一中心点预测不准确且产生的代表性精英个体数量少等问题,提出基于决策空间分段预测(SPDS)的动态多目标优化策略。首先,将前一时刻获取到的Pareto解集按照欧氏距离均匀分成3段,确保搜索空间的广度与搜索效率;其次,求得每段Pareto解集的中心点移动步长;最后,通过线性预测机制分段预测下一代种群,使算法更具鲁棒性和适应性。为了验证SPDS策略的有效性,采用15个标准动态测试函数实验对比动态非支配排序遗传算法-Ⅱ(DNSGA-Ⅱ-A)、种群预测策略(PPS)和基于特殊点的预测策略(SPPS)等算法在使用和不使用SPDS策略的性能,并将SPDS-DNSGA-Ⅱ-A算法应用于柴油机比例-积分-微分参数优化中。结果表明,SPDS策略在反向世代距离指标上的最优率分别比对比算法高78.33%,收敛性和多样性均有不同程度提高,可以适应动态环境变化,有效解决动态多目标优化问题。 展开更多
关键词 动态多目标优化 进化算法 分段预测 决策空间
在线阅读 下载PDF
分布式制造场景下的多类型生产服务资源动态配置
20
作者 裴植 吕珊珊 +1 位作者 胡盈盈 张聿 《计算机集成制造系统》 北大核心 2025年第10期3721-3732,共12页
在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生... 在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生产的价格、服务速率、放弃成本和放弃速率具有异构性,采用Tent混沌映射初始化种群,引入基于排队系统状态自适应调整的惯性权重和学习因子,并融入模拟退火算法的Metropolis准则,提出了一种多策略改进的粒子群算法(MIPSO),以实现制造资源的合理配置并最大化制造平台利润。此外,研究发现分布式制造平台在资源配置时须考虑企业和用户的预算限制并设定合适的资源上限。最后,通过数值实验证明了所提模型与算法的有效性,为分布式制造服务网络的资源配置提供了理论支持与管理洞见。 展开更多
关键词 分布式制造 排队网络模型 资源动态配置 粒子群算法 模拟退火算法
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部