期刊文献+
共找到1,350篇文章
< 1 2 68 >
每页显示 20 50 100
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
1
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
2
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Dynamic modeling and parameter identification of a gun saddle ring 被引量:5
3
作者 Tong Lin Lin-fang Qian +2 位作者 Qiang Yin Shi-yu Chen Tai-su Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期325-333,共9页
In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software ... In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software was used to build a parameterized dynamic model of the saddle ring.A parameter identification method for the ring was proposed based on the particle swarm optimization algorithm.A loading test was designed and performed several times at different elevation angles.The response histories of the saddle ring with different loads were then obtained.The parameters of the saddle ring dynamic model were identified from statistics generated at a 500 elevation angle to verify the feasibility and accuracy of the proposed method.The actual loading history of the ring at a 70°elevation angle was taken as the model input.The response histories of the ring under these working conditions were obtained through a simulation.The simulation results agreed with the actual response.Thus,the effectiveness and applicability of the proposed dynamic model were verified,and it provides an effective method for modeling saddle rings. 展开更多
关键词 GUN SADDLE RING dynamic response PARAMETER identification particle swarm optimization
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
4
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
采用动态种群策略的多目标粒子群优化算法
5
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子群优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
6
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
K9玻璃磁流变抛光材料去除效率的动态预测与工艺优化
7
作者 卢明明 刘宇强 +2 位作者 林洁琼 杨亚坤 孙少毅 《机械科学与技术》 北大核心 2025年第1期59-66,共8页
该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预... 该研究旨在精确预测磁流变抛光K9玻璃加工过程中的材料去除率,并找到最佳工艺参数组合。采用了响应面法(RSM)与粒子群优化算法(PSO)相结合的方法建立了材料去除率预测模型,并进行了最优工艺参数的搜索。首先,利用响应面法构建了动态预测模型,将工件转速、偏摆速度和工作间隙作为输入,K9玻璃的材料去除率作为输出,并研究了工艺参数与材料去除率之间的交互影响。随后,利用粒子群优化算法进行全局寻优,并通过实验验证了最优工艺参数。结果表明:构建的动态预测模型具有高精度,相关系数R^(2)=0.9887,调整决定系数R_(adj)^(2)=0.9388。各工艺参数与材料去除率均存在交互作用,但工件转速与工作间隙的交互作用影响最小。粒子群优化算法寻优得到的最佳工艺参数组合为:工件转速600 r/min、偏摆速度102 mm/min、工作间隙2.5 mm。预测的K9玻璃的材料去除率为0.739μm/min,实际为0.719μm/min,误差仅为2.8%。该研究为磁流变抛光K9玻璃的材料去除效率动态预测及工艺参数优化提供了一定的指导意义。 展开更多
关键词 K9 磁流变抛光 响应曲面法 粒子群优化算法 材料去除率 动态预测
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
8
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
考虑动态载荷变化的大型风力机叶片气动形状优化
9
作者 汪泉 王振海 张浩然 《可再生能源》 北大核心 2025年第8期1037-1043,共7页
针对大型风力机运行时叶片动态载荷变化幅度大导致疲劳载荷过大的问题,文章提出了基于动态载荷极小与功率输出极大的风力机叶片优化方法。考虑我国某近海风资源特性,利用OpenFAST计算时域风机的动态载荷变化,通过约束叶根动态拍打弯矩... 针对大型风力机运行时叶片动态载荷变化幅度大导致疲劳载荷过大的问题,文章提出了基于动态载荷极小与功率输出极大的风力机叶片优化方法。考虑我国某近海风资源特性,利用OpenFAST计算时域风机的动态载荷变化,通过约束叶根动态拍打弯矩极差及叶尖拍打幅值,利用Python编制程序并耦合OpenFAST对IEA 15 MW风力机叶片进行气动外形优化。优化结果显示:在低风速工况下,优化叶片的动态气动效率在时域范围内整体提高,同时叶根弯矩及叶尖位移均整体减小,有利于降低叶片疲劳载荷;优化叶片的时域平均功率输出增加1.455%,平均叶根拍打弯矩和叶尖拍打位移分别减小4.609%和6.397%,叶根拍打弯矩极差及叶尖拍打幅值明显降低。优化结果对降低叶片疲劳载荷具有重要的参考意义。 展开更多
关键词 动态优化设计 粒子群算法 OpenFAST 气弹响应 动态载荷
在线阅读 下载PDF
矿用自卸车座椅空气弹簧悬架参数辨识与优化
10
作者 刘红华 阳洁颖 刘翠雅 《机械设计与制造》 北大核心 2025年第5期217-222,228,共7页
矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子... 矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子群算法相比表现出不同,使粒子群在稳定状态与混沌状态之间交替向着最优点收敛,同时根据粒子运行状态动态调整惯性权重。提高了算法的适应性,明显提升收敛速度并提高了精度,有效避免了局部最优得出,进行整车试验验证了该方法的有效性。结果表明,导致乘坐舒适性下降的主要原因是由于原系统中的刚度和阻尼数值不匹配,因此将垂直方向加速度均方根值设为目标,对空气弹簧悬架的阻尼参数和非线性刚度通过遗传算法来进行优化。在优化后,目标值下降了30.4%,显著提高了乘坐舒适性。 展开更多
关键词 非线性 空气弹簧悬架 自适应混沌粒子群优化算法 辨识 优化
在线阅读 下载PDF
基于INSPSO-INC算法的光伏MPPT控制策略
11
作者 陈刚 刘旭阳 +1 位作者 李国雄 刘亚雄 《智慧电力》 北大核心 2025年第2期58-64,共7页
在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT... 在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT)控制策略。研究引入动态惯性权重、异步学习因子和自然选择机制,在分析寻优过程中对惯性权重和学习因子实时调整,并对群体进行自然选择操作以提高算法的全局寻优性能。仿真分析表明,所提算法在收敛速度和精度方面优势明显,且在追踪到最大功率点后的输出功率更平稳。 展开更多
关键词 光伏阵列 MPPT 动态部分遮阴 自然选择粒子群算法
在线阅读 下载PDF
基于自适应时域MPC的无人车轨迹跟踪控制
12
作者 丁承君 耿宇坤 +2 位作者 胡健鑫 王逸桐 王镇林 《科学技术与工程》 北大核心 2025年第23期9883-9891,共9页
为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒... 为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒子群优化算法(particle swarm optimization,PSO)对时域参数优化,获得不同工况下的离线最优时域数据集。然后,利用自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)对数据集训练,得到能够自适应调整时域的控制系统。最后,通过Carsim和Simulink联合仿真和实车验证。结果表明:自适应时域MPC控制器在不同工况下的轨迹跟踪精度和稳定性均得到了较大幅度的提高,且该算法具有较好的实用性。 展开更多
关键词 模型预测控制 轨迹跟踪 粒子群优化算法(PSO) 自适应神经模糊推理系统(ANFIS)
在线阅读 下载PDF
基于数字孪生的变压器热点温度预测预警技术研究 被引量:1
13
作者 李佰霖 马云帆 +3 位作者 陈昱锐 罗远林 褚凡武 付文龙 《工程设计学报》 北大核心 2025年第3期281-295,共15页
变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字... 变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字孪生六维模型,实现了系统数据共通、多源融合和虚实交互等功能。然后,构建可承载人工智能与机器学习算法的感知交互驱动型数字孪生系统,并采用混沌自适应粒子群优化(chaotic adaptive particle swarm optimization,CAPSO)算法对BP(back propagation,反向传播)神经网络的权重和阈值进行优化,加快了原始网络的收敛速度,同时建立了基于CAPSO-BP的变压器热点温度预测模型。最后,利用变压器现场监测数据在虚拟引擎平台上进行仿真分析,实现了变压器热点温度预测预警系统各功能的开发应用并验证了预测模型的可行性和有效性。研究结果为数字孪生变压器系统由数字化向智能化转型提供了新的思路和理论依据。 展开更多
关键词 变压器 数字孪生 人工智能 机器学习 混沌自适应粒子群优化 反向传播神经网络 温度预测
在线阅读 下载PDF
基于麻雀算法优化的LQR农机横向跟踪控制方法
14
作者 魏世博 吴翔 +2 位作者 王瞧 牛群峰 樊广晓 《中国农机化学报》 北大核心 2025年第6期250-258,298,共10页
路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用... 路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用前馈补偿的方式抑制稳态误差。其次,设定横向误差阈值,一旦超过该误差阈值,将采用麻雀算法对权重系数进行优化调整,以提高路径跟踪精度。最后,运用CarSim—Simulink平台进行联合仿真,通过3种不同曲率的单弯道路径和多弯道正弦路径对农机横向跟踪控制器进行精度测试,并与传统LQR控制器、传统MPC控制器、粒子群优化LQR控制器进行试验对比。结果表明,传统LQR控制器和传统MPC控制器以及粒子群优化LQR控制器在4条路径下平均横向误差分别为0.0667 m、0.0749 m、0.0359 m,而具备麻雀优化功能的控制器平均横向误差最大为0.015 m,具有较好的跟踪效果。 展开更多
关键词 智能农机 横向跟踪 LQR 麻雀算法 自适应权重 粒子群优化
在线阅读 下载PDF
考虑簧下信息的道路过程噪声自适应路面不平度估计研究
15
作者 邹函桐 夏小均 +3 位作者 张红 张志飞 陈浩 贺岩松 《振动与冲击》 北大核心 2025年第14期283-292,共10页
准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计... 准确获取路面不平度信息对于智能悬架控制至关重要,直接影响汽车动力学性能和舒适性。因此,本文旨在提升路面不平度估计精度,基于4自由度模型,将车身垂向振动、俯仰振动和簧下振动信息作为观测量,使用卡尔曼滤波算法搭建路面不平度估计观测器,同时利用车身垂向加速度信息构建粒子群-支持向量机模型以实现路面等级分类,并基于路面等级设计道路过程噪声协方差矩阵自适应更新算法,提出考虑簧下信息的过程噪声自适应路面不平度估计算法。仿真结果表明,在随机路面和冲击路面下,所提算法相对于常规增广卡尔曼滤波算法在实时路面不平度估计精度上取得一定提升。 展开更多
关键词 增广卡尔曼观测器 粒子群算法优化支持向量机 路面等级识别 过程噪声自适应
在线阅读 下载PDF
基于AIPSO的传感器网络动态节点部署策略
16
作者 俞垚魏 李云龙 +2 位作者 岳川 袁伟 李艳峰 《传感技术学报》 北大核心 2025年第2期322-331,共10页
利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空... 利用传感器网络对任务区域进行监测是保障区域安全稳定的重要手段。多传感器组建的覆盖网络可为区域提供高效的感知和通信服务。理想的传感器部署策略是实现网络覆盖最大化的必要条件。当部分固定传感器功能失效导致监测区域出现覆盖空洞,可以通过调整周围可移动传感器实施快速修复。首先建立了传感器网络节点部署模型。其次,针对传感器网络节点部署特征,提出了基于人工免疫机制的粒子群优化算法(Artificial Immune-based Particle Swarm Optimization,AIPSO),提高了种群的多样性,解决了传统优化算法中容易出现的早熟收敛和局部最优值问题,提升了节点部署效率。仿真结果表明,与传统粒子群算法(Particle Swarm Optimization,PSO)、基于量子行为的粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)以及改进的免疫粒子群算法(Improved Immune Particle Swarm Optimization,IIPSO)相比,AIPSO算法从整体上减少了动态传感器的移动距离,同时能够最大程度地保持传感器网络的覆盖率和节点覆盖效率。 展开更多
关键词 传感器网络 动态节点 部署策略 人工免疫 粒子群优化
在线阅读 下载PDF
基于自适应粒子群的机械臂模糊计算力矩控制
17
作者 李嘉辉 杨建中 +2 位作者 黄思 吴浩天 张青 《组合机床与自动化加工技术》 北大核心 2025年第1期150-154,159,共6页
针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算... 针对多自由度机械臂控制器在控制参数不能适应系统变化时轨迹跟踪性能不足的问题,提出一种基于自适应粒子群算法的模糊计算力矩控制(APSO-FCTC)。以二连杆机械臂轨迹跟踪为对象,基于拉格朗日法建立动力学模型,设计了用于自适应调整计算力矩控制(CTC)中PID参数的模糊控制器。进一步提出APSO-FCTC方法,通过基于动态适应度数组的自适应粒子群算法实时优化模糊集合的端点值。通过仿真验证了所提出的APSO-FCTC方法在传统CTC方法的控制参数不能适应系统变化时轨迹跟踪的优越性和抗干扰性,且优于单独使用模糊或自适应粒子群的方法。 展开更多
关键词 机械臂 计算力矩 模糊控制 自适应粒子群
在线阅读 下载PDF
云网融合环境下组合服务的动态重构
18
作者 刘坤 张鹏程 +1 位作者 金惠颖 吉顺慧 《计算机工程》 北大核心 2025年第5期206-218,共13页
随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重... 随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重要因素。此外,传统方法并未考虑空天地海不同场景下用户对不同服务质量(QoS)属性需求的差异性,使得组合服务的交付结果并不令人满意。为了解决上述问题,提出一种基于多目标粒子群优化(PSO)的组合服务动态重构方法。该方法首先根据重构原子服务的三维空间地理位置和功能进行聚类,有效解决在云网融合环境下服务规模庞大情况下的搜索空间爆炸问题;然后通过能耗计算模型得到服务调用的综合能耗,并将其作为动态重构的优化目标之一,结合服务的多种QoS属性进行多目标寻优,最终生成符合用户需求且能耗较低的重构方案。实验结果表明,该方法在云网融合环境下节约能耗和应对较大候选服务集规模等方面具有较优性能。 展开更多
关键词 云网融合 多目标粒子群优化算法 组合服务 动态重构 服务质量
在线阅读 下载PDF
动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用
19
作者 刘易奕 黄华 +3 位作者 王志刚 王海涛 卢超 李秋锋 《振动与冲击》 北大核心 2025年第1期61-69,共9页
基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特... 基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特性对匹配追踪算法进行优化。基于混沌策略生成惯性权重,并将学习因子和惯性权重通过三角函数关系联立在一起,而在位置更新中增加时间因子和混沌扰动策略的影响因素,平衡了算法的局部寻优和全局寻优能力。仿真与试验表明,改进后的算法检测精度得到较大提升,能够满足实际应用,并且极大地提升了稀疏分解运算的效率,与金相检测结果对比,防火涂层检测相对误差为-4.65%,防腐涂层的检测相对误差为1.33%。 展开更多
关键词 防护涂层 超声检测 稀疏分解 混沌扰动 动态多群粒子群优化(DMS-PSO)
在线阅读 下载PDF
基于AWPSO-GRU算法的盾构掘进姿态预测方法:以上海市域铁路机场联络线为例
20
作者 朱美恒 陈兆庚 +2 位作者 张冬梅 高俊华 黄忠凯 《科学技术与工程》 北大核心 2025年第14期6062-6071,共10页
为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive we... 为解决盾构掘进过程中参数设定标准不明确、盾构司机主观经验性过强而引发盾构姿态难以控制的工程问题,提出了一种考虑地层条件-隧道结构-掘进参数综合作用的盾构掘进姿态智能预测模型。首先建立了一种自适应权重粒子群优化(adaptive weight particle swarm optimization,AWPSO)算法;然后结合门控循环单元(gated recurrent unit,GRU)神经网络构建盾构姿态预测模型,其中AWPSO算法用于确定GRU神经网络中的最优超参数组合;最后结合上海轨道交通市域线机场联络线张江站-度假区站区间现场监测数据进行了案例验证。结果表明,基于AWPSO-GRU的盾构掘进姿态预测模型具有较高的可靠性和工程实用性,可为盾构掘进过程中施工参数的设定提供参考和依据。 展开更多
关键词 盾构隧道 粒子群优化 自适应惯性权重 门控循环单元 姿态预测
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部