期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
1
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(DT-CWT)
在线阅读 下载PDF
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
2
作者 Gensheng Hu Min Li +2 位作者 Dong Liang Mingzhu Wan Wenxia Bao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期592-603,共12页
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac... A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms. 展开更多
关键词 video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT) Cayley-Klein metric learning
在线阅读 下载PDF
基于强化双树复小波包变换的风电机组偏航轴承损伤识别
3
作者 王晓龙 金韩微 +3 位作者 张博文 石海超 杨秀彬 何玉灵 《动力工程学报》 北大核心 2025年第1期115-123,共9页
针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进... 针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进行幅值调制,进而增强不同信号成分的能量;然后,采用散布熵指标确定各分量最佳调制系数并通过双树复小波包逆变换得到修正信号;最后,对修正信号作归一化平方包络谱分析提取故障特征频率。结果表明:所提方法能够实现复杂工况下偏航轴承损伤类型的准确识别,具有一定工程参考价值。 展开更多
关键词 风电机组 偏航轴承 双树复小波包变换 谱幅值调制
在线阅读 下载PDF
DTCWPT与TSMAE融合的刀具磨损状态辨识方法
4
作者 韩涛 宫建成 +2 位作者 杨小强 王健 刘武强 《陆军工程大学学报》 2024年第5期83-92,共10页
获取高质量的刀具磨损特征信息是识别刀具磨损状态的前提。为克服现有刀具磨损状态辨识方法中特征信息提取不足的问题,提出了一种基于双树复小波包变换(dual-tree complex wavelet packet transform,DTCWPT)、时移多尺度注意熵(time-shi... 获取高质量的刀具磨损特征信息是识别刀具磨损状态的前提。为克服现有刀具磨损状态辨识方法中特征信息提取不足的问题,提出了一种基于双树复小波包变换(dual-tree complex wavelet packet transform,DTCWPT)、时移多尺度注意熵(time-shifted multiscale attention entropy,TSMAE)和随机森林(random forest,RF)的刀具磨损状态辨识方法。利用实测刀具磨损数据集对所提方法的有效性进行了验证,并从信号分解和特征提取两方面与其他磨损辨识技术进行了对比。结果表明,在特征提取阶段,所提方法展现出极高的效率,分别仅需9.41 s和14.91 s即可完成特征提取。在磨损辨识阶段,多次实验的平均辨识精度分别达到了99.33%和100%,充分证明了该方法不仅能够迅速响应,还能准确地辨识刀具的磨损状态。相较其他方法,所提方法在效率和精度上都有明显的优势,在刀具磨损状态辨识领域具有较高的应用潜力。 展开更多
关键词 刀具磨损 状态辨识 双树复小波包变换 时移多尺度注意熵 随机森林
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
5
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
基于双树复小波包峭度图的轴承故障诊断研究 被引量:16
6
作者 李辉 郑海起 唐力伟 《振动与冲击》 EI CSCD 北大核心 2012年第10期13-18,共6页
针对传统包络谱和峭度图分析技术的缺陷,提出一种基于双树复小波包峭度图的轴承故障诊断方法。该方法综合利用了双树复小波包变换和峭度图分析技术,克服了原峭度图方法只采用FIR和短时傅里叶变换滤波器的缺点,提高了从强噪声环境中提取... 针对传统包络谱和峭度图分析技术的缺陷,提出一种基于双树复小波包峭度图的轴承故障诊断方法。该方法综合利用了双树复小波包变换和峭度图分析技术,克服了原峭度图方法只采用FIR和短时傅里叶变换滤波器的缺点,提高了从强噪声环境中提取瞬态冲击特征的能力。首先利用双树复小波包变换,将振动信号分解成不同频带的分量,然后计算各小波分量的谱峭度,再利用谱峭度的滤波器作用,计算最大峭度值对应分量信号的包络谱,根据包络谱就可识别齿轮箱轴承的故障部位和类型。齿轮箱轴承故障振动实验信号的研究结果表明:该方法不仅提高了信噪比和频带选择的正确性,而且能有效地识别轴承的故障。 展开更多
关键词 故障诊断 轴承 双树复小波包变换 峭度图 包络谱
在线阅读 下载PDF
基于双树复小波包自适应Teager能量谱的滚动轴承早期故障诊断 被引量:12
7
作者 任学平 王朝阁 +1 位作者 张玉皓 王建国 《振动与冲击》 EI CSCD 北大核心 2017年第10期84-92,共9页
针对滚动轴承早期故障特征信息难以识别以及带通滤波器参数设置依赖使用者经验等造成共振带不能有效确定并自适应提取的问题,提出了频带幅值熵的概念。在此基础上,将双树复小波包变换和Teager能量谱结合,提出了基于双树复小波包变换自适... 针对滚动轴承早期故障特征信息难以识别以及带通滤波器参数设置依赖使用者经验等造成共振带不能有效确定并自适应提取的问题,提出了频带幅值熵的概念。在此基础上,将双树复小波包变换和Teager能量谱结合,提出了基于双树复小波包变换自适应Teager能量谱的早期故障诊断方法。该方法首先利用双树复小波包将采集到的振动信号进行分解,并计算各子带的频带幅值熵。然后将熵值按升序排列后依次作为阈值,提取频带幅值熵大于或等于阈值的子带,依据峭度指标确定最佳熵阈值和双树复小波包最佳分解层数,从而自适应并有效地提取出共振带。最后对共振带进行Teager能量谱分析,即可从中准确地识别出轴承的故障特征频率。通过信号仿真与工程实验数据分析验证了该方法的有效性与优越性。 展开更多
关键词 频带幅值熵 双树复小波包 Teger能量谱 自适应共振带提取 轴承故障
在线阅读 下载PDF
应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷 被引量:6
8
作者 谢罗峰 徐慧宁 +2 位作者 黄沁元 赵越 殷国富 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第1期184-191,共8页
提出结合双树复小波包变换(DTCWPT)、邻域成分分析法(NCA)、最小二乘支持向量机(LSSVM)的磁瓦内部缺陷检测方法.通过双树复小波包将采集的声音信号分解为6层,得到64个不同频带的子信号;求取特定频带信号的能量、偏度、峭度、模糊熵,并... 提出结合双树复小波包变换(DTCWPT)、邻域成分分析法(NCA)、最小二乘支持向量机(LSSVM)的磁瓦内部缺陷检测方法.通过双树复小波包将采集的声音信号分解为6层,得到64个不同频带的子信号;求取特定频带信号的能量、偏度、峭度、模糊熵,并将能量、偏度、峭度、模糊熵作为分类特征;利用邻域成分分析法对分类特征降维;将降维构造的新特征集输入到最小二乘支持向量机,判断磁瓦是否含有内部缺陷.通过实验验证,对提出的检测方法进行可行性分析.3种不同类型磁瓦的内部缺陷识别率均可以达到99%,与以往双谱切片方法相比,提高了检测识别率.试验结果表明,提出的方法具有检测速度快、可靠性高、适应性强等特点,为高效、准确地进行磁瓦内部缺陷检测提供了有效的技术手段. 展开更多
关键词 磁瓦 内部缺陷 双树复小波包变换(DTCWPT) 邻域成分分析法(NCA) 最小二乘支持向量机(LSSVM)
在线阅读 下载PDF
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
9
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (DT-CWT ) singular value decomposition (SVD)
在线阅读 下载PDF
基于信号处理的故障实时在线诊断与处理 被引量:1
10
作者 王红 《小型内燃机与车辆技术》 2018年第4期72-76,共5页
为了提高机械设备实时在线诊断的精准性,提出了DT-CWPT和谱峭度相结合的机械故障在线诊断与处理算法,双树复小波包变换实现采集信号的阈值降噪,谱峭度确定最佳带宽和频带中心,构建轴承故障在线诊断系统,使用该算法对轴承内圈故障进行识... 为了提高机械设备实时在线诊断的精准性,提出了DT-CWPT和谱峭度相结合的机械故障在线诊断与处理算法,双树复小波包变换实现采集信号的阈值降噪,谱峭度确定最佳带宽和频带中心,构建轴承故障在线诊断系统,使用该算法对轴承内圈故障进行识别。结果显示,该算法可以精准确定故障,效果较好。 展开更多
关键词 双树复小波变换 谱峭度 在线故障诊断
在线阅读 下载PDF
基于双树复小波包变换和1.5维谱的轴承故障诊断方法 被引量:1
11
作者 湛维明 石岩 王佳 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第6期848-853,共6页
针对滚动轴承故障识别困难这一问题,提出了基于双树复小波包变换和1.5维谱的诊断方法。首先通过双树复小波包变换将复杂的、非平稳的原始故障信号分解为若干个不同子带信号分量,继而利用峭度评价指标从分解所得结果中筛选出蕴含丰富特... 针对滚动轴承故障识别困难这一问题,提出了基于双树复小波包变换和1.5维谱的诊断方法。首先通过双树复小波包变换将复杂的、非平稳的原始故障信号分解为若干个不同子带信号分量,继而利用峭度评价指标从分解所得结果中筛选出蕴含丰富特征信息的子带信号分量,将其视为最佳分量并做进一步包络解调运算,最后计算所得包络信号的1.5维谱,从中提取出轴承故障特征信息。实测信号分析结果表明,基于双树复小波包变换和1.5维谱的诊断方法能够实现滚动轴承故障类型的有效判定,具有一定工程应用价值。 展开更多
关键词 双树复小波包变换 1.5维谱 滚动轴承 故障诊断
在线阅读 下载PDF
基于量子高斯混合模型的振动信号降噪方法 被引量:2
12
作者 杨望灿 张培林 +2 位作者 陈彦龙 吴定海 李海平 《振动与冲击》 EI CSCD 北大核心 2019年第11期235-241,共7页
由于机械设备振动信号受到背景噪声的干扰,造成机械设备故障状态特征不明显,因此提出了一种基于量子高斯混合模型的振动信号降噪方法。首先,对振动信号进行双树复小波包变换,对双树复小波包系数建立高斯混合模型,根据贝叶斯最大后验估... 由于机械设备振动信号受到背景噪声的干扰,造成机械设备故障状态特征不明显,因此提出了一种基于量子高斯混合模型的振动信号降噪方法。首先,对振动信号进行双树复小波包变换,对双树复小波包系数建立高斯混合模型,根据贝叶斯最大后验估计准则,得到双树复小波包系数收缩函数;然后,利用双树复小波包系数父代和子代的空间相关性,结合量子叠加态理论计算噪声信号和有用信号小波系数出现的概率值;最后,根据量子叠加态得到的概率参数值调节高斯混合模型中的小波包系数收缩函数,使小波包系数自适应非线性收缩,提高高斯混合模型的局部自适应性,实现机械振动信号的降噪处理。仿真信号和实测行星齿轮箱振动信号实验结果表明,该方法能够有效地去除振动信号中的噪声,凸显机械设备的故障状态特征。 展开更多
关键词 降噪处理 高斯混合模型 量子理论 振动信号 双树复小波包变换
在线阅读 下载PDF
基于双树复小波包变换和形态学的减速机故障诊断 被引量:3
13
作者 申迎松 宋志兵 《煤矿机械》 2023年第2期162-164,共3页
针对煤机设备减速机的振动信号特征难以提取的问题,提出了双树复小波包变换和形态学相结合的故障特征提取策略。首先利用双树复小波将减速机的振动信号分解成若干个不同频段的分量。然后根据减速机故障特征频率分布特征,选取相关的频段... 针对煤机设备减速机的振动信号特征难以提取的问题,提出了双树复小波包变换和形态学相结合的故障特征提取策略。首先利用双树复小波将减速机的振动信号分解成若干个不同频段的分量。然后根据减速机故障特征频率分布特征,选取相关的频段分量进行降噪重构。最后对重构后含有故障特征频率的分量进行形态滤波处理,进而提取出减速机的故障特征。利用现场实测数据进行验证,结果表明,该故障特征提取策略可以有效地提取出减速机的故障特征。 展开更多
关键词 双树复小波包变换 形态学 故障诊断 减速机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部