随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,...随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,提出了冷热电联供型区域综合能源系统电/热/冷云储能优化配置模型。首先,构建冷热电联供型区域综合能源系统的结构,并分析其输入、输出转化关系;然后对用户以及云储能提供商的充放能行为进行分析,分别从两主体的角度建立两阶段储能优化配置模型,第一阶段以用户总成本最小为目标对用户储能需求进行优化,第二阶段则在云储能提供商整合用户需求后,以云储能提供商成本最小为目标进行储能配置优化。最后,通过算例验证了云储能模式在储能配置中应用的优势,并对比分析了系统中有无蓄冷以及碳排放因素对储能优化配置的影响。展开更多
“双碳”背景下要求直流炉供热机组具备快速变负荷能力。对此,提出一种基于线性时变模型预测控制(linear time-varying model predictive control,LTV-MPC)的电热协调变负荷策略,可同时利用锅炉蓄热和热网蓄热以提高变负荷速率。首先,...“双碳”背景下要求直流炉供热机组具备快速变负荷能力。对此,提出一种基于线性时变模型预测控制(linear time-varying model predictive control,LTV-MPC)的电热协调变负荷策略,可同时利用锅炉蓄热和热网蓄热以提高变负荷速率。首先,对热负荷信号偏差进行积分从而建立等效热负荷模型,并将其作为预测模型的被控量之一;然后,以负荷快速跟踪、机组运行稳定以及供热及时补偿作为MPC滚动优化的目标,进而在线求解每个时刻的最优控制律并作用于机组,此外,显式处理了机组运行约束,确保供热抽汽流量变化不会影响低压缸运行稳定性;最后,基于某350 MW机组进行仿真验证,结果表明,该策略能够实现对5%Pe/min变负荷指令的精准跟踪,且相较于基于PID的电热协调变负荷策略,热负荷恢复时间缩短26%。仿真结果验证了所提策略在提升供热机组快速变负荷能力方面的优越性。展开更多
文摘随着用户从消费者向产消者转型,越来越多用户有了储电、储热、蓄冷的需求,然而储能的高成本成为了用户侧储能的阻碍,为了解决这一问题,将云储能模式与冷热电联供型(combined cooling heating and power,CCHP)区域综合能源系统进行结合,提出了冷热电联供型区域综合能源系统电/热/冷云储能优化配置模型。首先,构建冷热电联供型区域综合能源系统的结构,并分析其输入、输出转化关系;然后对用户以及云储能提供商的充放能行为进行分析,分别从两主体的角度建立两阶段储能优化配置模型,第一阶段以用户总成本最小为目标对用户储能需求进行优化,第二阶段则在云储能提供商整合用户需求后,以云储能提供商成本最小为目标进行储能配置优化。最后,通过算例验证了云储能模式在储能配置中应用的优势,并对比分析了系统中有无蓄冷以及碳排放因素对储能优化配置的影响。