The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified resp...The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.展开更多
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11002061)
文摘The existence of two kinds of generalized synchronization manifold in two unidirectionally coupled discrete stochastic dynamical systems is studied in this paper. When the drive system is chaotic and the modified response system collapses to an asymptotically stable equilibrium or asymptotically stable periodic orbit, under certain conditions, the existence of the generalized synchronization can be converted to the problem of a Lipschitz contractive fixed point or Schauder fixed point. Moreover, the exponential attractive property of generalized synchronization manifold is strictly proved. In addition, numerical simulations demonstrate the correctness of the present theory. The physical background and meaning of the results obtained in this paper are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.