期刊文献+
共找到608篇文章
< 1 2 31 >
每页显示 20 50 100
Hybrid anti-prematuration optimization algorithm
1
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Momentum particle swarm optimizer
2
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
3
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
4
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
5
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
提升LCL型并网逆变器在弱电网下适应性的优化策略
6
作者 王涛 于少娟 刘立群 《电力系统及其自动化学报》 北大核心 2025年第1期26-34,共9页
为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误... 为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误差和系统稳定性指标在内的多目标函数,并利用混合粒子群优化算法对控制器参数进行优化,进而提高系统在电网阻抗发生变化时的鲁棒性。最后,通过仿真平台以及实验验证了该策略的有效性。 展开更多
关键词 并网逆变器 弱电网 混合粒子群优化算法 多目标优化
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
7
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
四轮毂电机驱动汽车的差速转向控制研究
8
作者 屈小贞 张昊 +1 位作者 李刚 刘晏 《现代制造工程》 北大核心 2025年第9期90-98,共9页
为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,... 为提高四轮毂电机驱动汽车在高速转弯时的转向稳定性,准确协调各驱动轮之间的差速控制,设计了一种基于驱动力矩分配的差速转向控制策略。差速转向控制策略采用分层控制架构,上层控制器基于滑模变结构控制算法计算汽车所需的总驱动力矩,基于改进粒子群优化算法优化模糊全局快速终端滑模控制,计算汽车差速转向所需的附加横摆力矩;下层控制器则基于二次规划算法将所计算的总驱动力矩和附加横摆力矩进行优化分配,进而得到各个车轮的驱动力矩。通过Carsim/Simulink软件进行联合仿真对所设计的控制策略进行验证,结果表明,相较于传统控制策略,差速转向控制策略能更有效地降低汽车在高速转弯时的横摆角速度和质心侧偏角峰值响应。 展开更多
关键词 四轮毂电机 差速转向控制 改进粒子群优化算法 二次规划
在线阅读 下载PDF
基于改进细菌觅食算法的两阶段选址-路径规划
9
作者 刘巍巍 姜珊 +1 位作者 祁朔 王迎春 《沈阳工业大学学报》 北大核心 2025年第2期238-249,共12页
【目的】诸如名贵药材、有机水果等高值农产品往往具有高品质把控和高保鲜要求,通常需要经过初加工才能进入市场流通,故初加工中心的选址对平衡生产端分散的农村采购物流和配送点密集的城市配送物流起到重要的协调作用。鉴于高值农产品... 【目的】诸如名贵药材、有机水果等高值农产品往往具有高品质把控和高保鲜要求,通常需要经过初加工才能进入市场流通,故初加工中心的选址对平衡生产端分散的农村采购物流和配送点密集的城市配送物流起到重要的协调作用。鉴于高值农产品存在的农村采购物流与城市配送物流协调性差、运输成本占比过大的共性特征,如何在保证客户满意度的同时降本增效是高值农产品选址-路径规划中亟待解决的关键问题。【方法】提出了以总成本最小、客户满意度值最大为目标的两阶段物流选址-路径优化模型。第1阶段聚焦烘干中心选址,考虑建设成本、运输便利性、服务辐射范围等构建选址模型,优选出与中草药产区及用户地理位置相匹配的初加工中心;第2阶段基于筛选的初加工中心位置规划物流运输路径,以车辆容量、速度、时间窗为约束,综合运输、惩罚、货损成本与客户满意度构建多目标路径规划模型。为求解上述模型,将粒子群算法、差分进化理念及种群进化因子融入细菌觅食算法中,提出了混合多目标优化的MOBFO-NMOPSO算法,所设计算法通过引入基于小生境的多目标粒子群算法以提高求解精度;通过在复制操作中引入差分进化思想以保留种群的多样性;通过将种群进化因子引入迁徙操作以提高算法收敛速度。为验证模型及算法的有效性,首先将所提出的MOBFO-NMOPSO算法与NSGA-II、MOPSO、NMOPSO、GWOEDA、GA等算法对比,验证了算法在求解性能及求解速度上的优势。其次以S企业中草药供应链的实际数据为支撑,综合考虑烘干中心建设成本、车辆运输成本、时间惩罚成本及货损成本,全面求解两阶段选址-路径规划问题。【结果】仿真结果表明,优化后的企业运输成本降低了10.26%,客户满意度提升了44.84%,验证了模型在求解高值农产品物流规划问题上的有效性。从服务中草药产区数量、物流成本和客户满意度3个维度考量,分别设计了S企业中草药供应链在考虑不同极端解和折中解的实际物流路径方案,以供企业选择。【结论】研究构建的两阶段选址-路径优化模型及改进的MOBFO-NMOPSO算法,通过降低供应链总成本切实增强其竞争力,通过提高客户满意度稳固供需合作关系,并通过构建两阶段物流规划体系有力推动高值农产品供应链的协调稳健发展,提升其高值农产品运作效率。 展开更多
关键词 选址路径 双目标模型 两阶段物流 细菌觅食算法 粒子群算法 差分进化 种群进化 车辆运输
在线阅读 下载PDF
考虑站点转乘的公交接驳地铁站点群线路优化
10
作者 王连震 杜翼飞 +2 位作者 刘克毅 周铭 薛淑祺 《北京交通大学学报》 北大核心 2025年第4期41-51,共11页
为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更... 为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更多换乘的情况加以约束,促使系统在设计时尽可能减少不必要的换乘.引入自适应精英保留策略和惯性系数动态调整策略,设计并采用遗传粒子群混合算法来求解模型.研究结果表明:在接驳公交服务能力方面,相较于原有公交线网,优化后的公交载客量提升约23%;在经济性维度,乘客人均出行成本降低约9%;在算法性能上,所设计的混合优化算法较传统遗传算法运行速度提升15.4%.优化模型在换乘吸引力、人均出行成本等多个关键指标上均优于既有公交线路,验证了模型在提升接驳公交网络运营效率和服务质量方面的有效性,可以为城市公共交通系统的精细化管理和智能化升级提供参考. 展开更多
关键词 城市交通 地铁站点群 接驳公交线路 多目标协同优化 遗传粒子群混合算法
在线阅读 下载PDF
基于毁伤评估结果的无人机对地攻击任务分配方法 被引量:2
11
作者 侯鹏 葛玉雪 +2 位作者 裴扬 岳源 艾俊强 《兵工学报》 北大核心 2025年第2期17-29,共13页
为提升多无人机协同对地打击任务的作战效能并提高协同任务分配效率,提出一种基于作战单元毁伤概率结果的任务分配方法。构建3种典型地面目标毁伤评估模型,计算不同打击方向下各目标的毁伤概率作为任务分配问题的数据支撑。对各无人机... 为提升多无人机协同对地打击任务的作战效能并提高协同任务分配效率,提出一种基于作战单元毁伤概率结果的任务分配方法。构建3种典型地面目标毁伤评估模型,计算不同打击方向下各目标的毁伤概率作为任务分配问题的数据支撑。对各无人机挂载不同武器打击地面目标的典型场景,提出改进混合粒子群优化算法解决任务分配问题。利用遗传算法的交叉、变异操作更新粒子位置,对交叉操作、变异操作进行改进并引入粒子反转操作增加粒子的多样性,避免陷入局部最优。通过仿真算例对所提方法进行验证,结果证明在利用毁伤评估模型计算地面目标的毁伤概率后,所提方法能在满足毁伤要求的前提下得到满足约束条件的任务分配方案,且能提高多无人机体系整体上的作战效能。 展开更多
关键词 多无人机 任务分配 毁伤评估 毁伤概率 混合粒子群优化算法
在线阅读 下载PDF
基于GAPSO优化的注塑机注射速度模糊PID控制器 被引量:2
12
作者 张绍坤 沈加明 +2 位作者 胡燕海 傅挺 王舟挺 《计算机工程》 北大核心 2025年第5期239-248,共10页
针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的... 针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的操作繁琐、难以找到最优参数组合等问题,提出一种基于遗传粒子群算法(GAPSO)优化的模糊PID控制方法。对粒子群算法(PSO)进行改进,提出一种惯性因子随S函数变化的改进PSO算法(SDIF-PSO),在改进粒子群算法的基础上,将改进PSO算法与GA算法相结合,构建基于GAPSO算法优化的模糊PID控制器。利用Matlab/Simulink对注射过程进行仿真,实验结果表明,相比于传统的模糊PID控制器以及分别采用改进PSO算法和GA算法优化的模糊PID控制器,基于GAPSO优化的模糊PID控制器具有响应速度更快、超调量更小、稳态精度更高等优点。 展开更多
关键词 伺服电机 注塑机 注射速度 模糊PID 遗传粒子群算法 混合优化算法
在线阅读 下载PDF
基于博弈论的混合粒子群的多无人机任务分配 被引量:1
13
作者 王荣杰 张亮 《计算机科学》 北大核心 2025年第7期255-261,共7页
综合考虑无人机载荷上限、航迹代价、任务时间偏差和任务收益构造任务分配模型,基于博弈论提出了改进粒子群算法,以解决多无人机协同任务分配问题(MTAP)。通过实数编码、死锁修复将粒子解码为可行的任务序列,建立了粒子向量与任务序列... 综合考虑无人机载荷上限、航迹代价、任务时间偏差和任务收益构造任务分配模型,基于博弈论提出了改进粒子群算法,以解决多无人机协同任务分配问题(MTAP)。通过实数编码、死锁修复将粒子解码为可行的任务序列,建立了粒子向量与任务序列之间的映射;将群体优化的演化博弈论中的演化稳定策略引入粒子群算法,利用博弈操作得到博弈均衡点,并对标准粒子群的控制参数进行自适应调整,平衡标准粒子群算法的全局和局部搜索能力。为解决粒子易陷入局部收敛的问题,提出一种跳出局部收敛策略,对粒子的个体最佳位置向量进行改进,以达到增强社会认知的效果。实例仿真分析表明,与现有算法相比,所提算法能够有效解决多无人机同时打击场景中的任务分配问题。 展开更多
关键词 多无人机 任务分配 演化博弈 标准粒子群算法 演化稳定策略
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法 被引量:2
14
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
基于三种群粒子群优化策略的移动机器人路径规划
15
作者 王珂 姜春艳 +1 位作者 黄黎 张新海 《深圳大学学报(理工版)》 北大核心 2025年第4期447-454,I0006-I0008,共11页
针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索... 针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索群、开发群和增强群的协同进化机制,增强了全局搜索与局部开发能力.探索群利用粒子质量评估和随机选择策略更新速度;开发群采用线性认知系数动态调整机制;增强群引入较大随机分量以减少局部最优影响.算法引入随机扰动策略,当搜索性能停滞时对粒子群施加扰动,以增强多样性.在单峰函数(F_(1))、带噪声单峰函数(F_(4))和多峰函数(F_(9))3类基准函数测试中,TPPSO算法的平均值和标准差均优于传统PSO算法、SAVPSO算法和RRT*算法,验证了其优异的优化性能和稳定性.在4个10 m×10 m的二维标准环境中生成的路径能有效规避障碍物并减少不必要的迂回,路径质量最优.复杂环境验证实验进一步发现,在动态多障碍物环境中的规划成功率达91.5%;三维环境中的平均爬升率为10.7%.TPPSO算法能有效解决移动机器人在复杂环境下的路径规划问题. 展开更多
关键词 计算机应用 路径规划 粒子群优化 进化算法 线性认知系数 随机扰动
在线阅读 下载PDF
舰船专用舱室危险品的三维装箱问题研究与优化
16
作者 张启堂 任鸿翔 +2 位作者 杨晓 王德龙 孙铭泽 《中国航海》 北大核心 2025年第S1期146-154,共9页
舰船专用舱室危险品的合理装箱,对危险品分拣和出库效率有较大影响。在满足三维装箱问题的通用约束和舰船专用舱室特殊约束下,以装入的危险品数量最多为优化目标,构建危险品海上装箱的混合整数规划模型(MIP)。采用粒子群遗传混合算法(PS... 舰船专用舱室危险品的合理装箱,对危险品分拣和出库效率有较大影响。在满足三维装箱问题的通用约束和舰船专用舱室特殊约束下,以装入的危险品数量最多为优化目标,构建危险品海上装箱的混合整数规划模型(MIP)。采用粒子群遗传混合算法(PSOGA),引入启发式规则和平均维度信息,有效加速了算法的执行过程,同时引入了多样性控制机制,提出了两层次搜索策略,进一步提高了搜索效率和结果质量。分别模拟了3种和5种危险品的数据进行装箱试验,表明算法能够在360 s内高效求解所有算例,可为舰船专用舱室危险品装载提供可靠的参考。 展开更多
关键词 多箱型危险品装箱 粒子群遗传混合算法 混合整数规划 舰船专用舱室
在线阅读 下载PDF
基于混合粒子群算法的整周模糊度解算算法
17
作者 彭帮旭 叶金才 刘庆华 《电光与控制》 北大核心 2025年第11期14-19,共6页
为了快速、准确地解算全球卫星导航系统(GNSS)整周模糊度,提出了一种基于混合粒子群搜索(HPSO)算法的整周模糊度解算算法。首先,通过随机学习和社会学习策略改进速度更新公式,增强算法搜索前期的全局探索能力;其次,将模拟退火算法引入... 为了快速、准确地解算全球卫星导航系统(GNSS)整周模糊度,提出了一种基于混合粒子群搜索(HPSO)算法的整周模糊度解算算法。首先,通过随机学习和社会学习策略改进速度更新公式,增强算法搜索前期的全局探索能力;其次,将模拟退火算法引入位置更新公式,增强算法搜索后期的收敛速度和跳出局部最优的能力;最后,通过不同维度的整周模糊度解算实验对算法进行验证,结果表明:在三维解算实验中,HPSO算法的解算成功率与LAMBDA算法和MLAMBDA算法相近,但解算时间较两种算法分别减少了0.0475 s和0.0079 s;多维解算实验中,HPSO算法仍具有较好的实时性和鲁棒性;在实际RTK定位解算中,X、Y、Z方向的定位精度均能控制在0.02 m以内,可以达到厘米级定位。 展开更多
关键词 GNSS 载波相位测量 整周模糊度 混合粒子群算法 模拟退火算法
在线阅读 下载PDF
基于混合启发式算法的集装箱爆炸品装箱问题研究与优化
18
作者 钟鑫 任鸿翔 +1 位作者 王德龙 韦德鉴 《中国航海》 北大核心 2025年第S1期166-174,共9页
在海运危险货物集装箱运输中,科学合理的装箱方案对提升运输安全至关重要。针对运输中危险货物中爆炸品的特殊配装和隔离要求,以最小化所需集装箱数量为目标,提出了一种基于拟人式装载策略的混合粒子群遗传算法(GA-PSO)。该混合启发式... 在海运危险货物集装箱运输中,科学合理的装箱方案对提升运输安全至关重要。针对运输中危险货物中爆炸品的特殊配装和隔离要求,以最小化所需集装箱数量为目标,提出了一种基于拟人式装载策略的混合粒子群遗传算法(GA-PSO)。该混合启发式算法结合了遗传算法的全局搜索能力和粒子群算法的局部优化能力,通过引入种群多样性监控算法的搜索效率和收敛性,进一步提升了算法性能。通过模拟5组10种爆炸品货物的装箱场景,该算法与遗传算法相比,装箱方案质量更好,时间消耗更少。 展开更多
关键词 三维装箱问题 混合粒子群遗传算法 拟人式装载策略
在线阅读 下载PDF
考虑绿证交易和碳排放约束的交直流混合微网低碳优化调度 被引量:2
19
作者 杨雪梅 张文庆 +2 位作者 邹文文 李斌 陈鑫 《智慧电力》 北大核心 2025年第1期9-16,共8页
在“双碳”背景下,为了降低交直流混合微网的碳排放水平,提出一种考虑绿证交易(GCT)和碳排放的微网低碳优化调度策略。首先,针对交直流混合微网的特点,引入绿证交易机制,以绿证交易成本和发电能耗成本最小为优化目标,建立交直流混合微... 在“双碳”背景下,为了降低交直流混合微网的碳排放水平,提出一种考虑绿证交易(GCT)和碳排放的微网低碳优化调度策略。首先,针对交直流混合微网的特点,引入绿证交易机制,以绿证交易成本和发电能耗成本最小为优化目标,建立交直流混合微网低碳优化模型;其次,引入Tent混沌映射和萤火虫扰动对传统PSO进行改进,以提高模型的求解精度和速度;最后,以某工业园区微电网为例对所提方法进行仿真验证。结果表明,所提方法能够在兼顾经济性和环保性的前提下,有效地控制微网减少碳排放,为交直流混合微网的低碳调度提供了一种新的方法。 展开更多
关键词 交直流混合微网 绿证交易 碳排放约束 优化运行 改进粒子群算法
在线阅读 下载PDF
基于环境识别策略的多目标自适应粒子群 算法及应用
20
作者 武保同 舒若琦 陈志祥 《计算机应用研究》 北大核心 2025年第10期2980-2988,共9页
针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策... 针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策略,避免算法在搜索过程中过快收敛;提出基于环境识别的自适应学习算子和自适应跳跃协作算子,分别通过自识别解空间内种群多样性程度和粒子小生境内拥挤度信息实现粒子间信息的交互和学习。通过多组基准函数的仿真实验进行比较,结果表明算法的搜索能力和优化精度都得到明显改善。最后,通过一个带有NP-hard性质的实际多阶段生产案例验证了算法的实用性。 展开更多
关键词 粒子群算法 进化计算 自适应学习 多目标优化 多阶段生产问题
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部