新型配电系统柔性消弧装置及定位技术均需充分挖掘相电流暂态特征来实现选相、选线和故障定位。针对此问题,对新型配电系统单相接地故障相电流暂态分布特性进行分析,提出了一种基于相电流多维时频分布特征差异的新型配电系统单相接地故...新型配电系统柔性消弧装置及定位技术均需充分挖掘相电流暂态特征来实现选相、选线和故障定位。针对此问题,对新型配电系统单相接地故障相电流暂态分布特性进行分析,提出了一种基于相电流多维时频分布特征差异的新型配电系统单相接地故障定位新方法。依据故障相电流故障暂态量与非故障相电流故障暂态量的差异性,通过灰色关联度算法完成故障选相;对各出线始端监测点以及疑似故障馈线分支监测点的相电流暂态波形进行26维多维时频特征的提取,通过经方差优化的t-分布近邻嵌入算法(variance-optimized t-distributed stochastic neighbor embedding,VTSNE)进行筛选和降维,并对处理后的特征数据进行基于密度的有噪空间聚类算法(density-based special clustering of application with noise,DBSCAN)聚类完成故障选线和故障区段定位。该方法在某绿色港口10 kV新型配电系统模型中得到验证,在不同故障初相角、不同过渡电阻等故障场景下均可准确可靠定位故障位置,对采样同步精度及采样频率要求低,易于工程实现。展开更多
针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行...针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。展开更多
为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文...为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。展开更多
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic...For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.展开更多
Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clu...Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms.展开更多
As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol...As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.展开更多
文摘新型配电系统柔性消弧装置及定位技术均需充分挖掘相电流暂态特征来实现选相、选线和故障定位。针对此问题,对新型配电系统单相接地故障相电流暂态分布特性进行分析,提出了一种基于相电流多维时频分布特征差异的新型配电系统单相接地故障定位新方法。依据故障相电流故障暂态量与非故障相电流故障暂态量的差异性,通过灰色关联度算法完成故障选相;对各出线始端监测点以及疑似故障馈线分支监测点的相电流暂态波形进行26维多维时频特征的提取,通过经方差优化的t-分布近邻嵌入算法(variance-optimized t-distributed stochastic neighbor embedding,VTSNE)进行筛选和降维,并对处理后的特征数据进行基于密度的有噪空间聚类算法(density-based special clustering of application with noise,DBSCAN)聚类完成故障选线和故障区段定位。该方法在某绿色港口10 kV新型配电系统模型中得到验证,在不同故障初相角、不同过渡电阻等故障场景下均可准确可靠定位故障位置,对采样同步精度及采样频率要求低,易于工程实现。
文摘针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。
文摘为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。
基金supported by the National Key Research and Development Program of China(2018YFB1003700)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)+2 种基金the“333” project of Jiangsu Province(BRA2017228 BRA2017401)the Talent Project in Six Fields of Jiangsu Province(2015-JNHB-012)
文摘For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.
文摘Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms.
基金Project(2018YFE0120100)supported by the National Key R&D Program of ChinaProject(YBPY2040)supported by the Scientific Research Foundation of Graduate School of Southeast University,China。
文摘As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.