期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于DPC-GMM算法的船舶燃油系统故障诊断 被引量:7
1
作者 魏一 张跃文 李斌 《中国舰船研究》 CSCD 北大核心 2018年第6期147-153,165,共8页
[目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于... [目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于DPC-GMM算法的船舶燃油系统故障诊断方法;然后,通过训练船舶燃油系统状态所对应的高斯混合模型参数,实现对船舶燃油系统故障的无监督诊断;最后,基于获取的船舶燃油系统故障数据,验证该方法的有效性。[结果]实验结果表明,采用基于DPC-GMM算法的故障辨识准确率高、识别速度快,优于传统的反向传播(BP)神经网络和支持向量机(SVM)诊断算法。[结论]研究结果对船舶燃油系统的故障诊断有重要的指导意义。 展开更多
关键词 故障诊断 高斯混合模型 期望最大化 密度峰值聚类
在线阅读 下载PDF
基于改进变色龙算法的交通控制子区划分方法 被引量:1
2
作者 张添翼 闫飞 《计算机工程与设计》 北大核心 2025年第1期15-22,共8页
为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到... 为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到子区划分结果。选取义乌市某区域路网进行模型验证分析,结果表明该方法与常用的固定配时法及谱聚类法相比在平均排队长度上降低7.9%和6.2%,停车次数降低32.6%和16.5%,平均延误时间降低17.8%和11.9%,该划分方法能使城市路网子区划分合理,控制效果显著。 展开更多
关键词 城市交通 信号控制 交叉口关联度 控制子区 变色龙算法 密度峰值聚类 模型验证
在线阅读 下载PDF
基于DPC-SVDD的制造过程异常诊断 被引量:1
3
作者 沈维蕾 杨雪春 吴善春 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期433-439,共7页
文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC... 文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。 展开更多
关键词 支持向量数据描述(SVDD)算法 密度峰值聚类(dpc)算法 异常检测 密度峰值聚类(dpc)控制图
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
4
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值聚类算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
基于稀疏张量补全与密度峰值聚类的低空智能网多辐射源定位算法
5
作者 陈智博 郭道省 《电子与信息学报》 北大核心 2025年第5期1310-1321,共12页
该文聚焦于低空智能网中多辐射源的定位技术研究,旨在利用搭载频谱监测设备的无人机采集的信号强度数据,精确解析低空目标区域内多个未知辐射源的空间位置。然而,实际应用场景面临多重挑战:无人机飞行轨迹受限导致测量数据稀疏;环境噪... 该文聚焦于低空智能网中多辐射源的定位技术研究,旨在利用搭载频谱监测设备的无人机采集的信号强度数据,精确解析低空目标区域内多个未知辐射源的空间位置。然而,实际应用场景面临多重挑战:无人机飞行轨迹受限导致测量数据稀疏;环境噪声及阴影衰落加剧数据波动;多个未知辐射源进一步加重了算法的复杂度,严重阻碍了现有低空多辐射源定位(MSL)技术的效能发挥。针对上述挑战,该文创新性地提出了一种基于稀疏张量补全与密度峰值聚类的低空智能网多辐射源定位算法。该算法将多辐射源定位问题解构为两个核心步骤:稀疏张量补全和张量密度峰值检测。具体而言,首先根据无人机的飞行轨迹将稀疏测量数据构建为3维稀疏张量,随后采用卷积自编码器网络对该张量进行高效补全,以复原目标空间内的完整信号强度张量图谱。在此基础上,利用改进的密度峰值聚类算法搜索张量中的密度峰值中心,从而实现多辐射源的精确定位。仿真结果表明,本文提出的算法能够有效利用稀疏测量数据对低空多辐射源进行定位,克服了因环境噪声带来的异常值影响,且展现出对辐射源数量的鲁棒性,为低空智能网中的多辐射源定位问题提供了有效的解决方案。 展开更多
关键词 低空智能网 多辐射源定位 张量补全 卷积自编码器 密度峰值聚类
在线阅读 下载PDF
面向无序抓取的DPC聚类多目标检测方法研究 被引量:2
6
作者 陈泽瑜 李向国 +1 位作者 曹登锋 朱灯林 《计算机工程与应用》 CSCD 北大核心 2023年第23期175-182,共8页
为了尽可能多地从场景中检测出可抓取目标,提出了一种基于DPC特征点聚类的多目标检测算法。使用SIFT算法提取模板图像和待检测图像的特征点,并使用DPC算法对待检测图像特征点聚类,得到属于不同聚类中心的特征点集合。将属于不同聚类中... 为了尽可能多地从场景中检测出可抓取目标,提出了一种基于DPC特征点聚类的多目标检测算法。使用SIFT算法提取模板图像和待检测图像的特征点,并使用DPC算法对待检测图像特征点聚类,得到属于不同聚类中心的特征点集合。将属于不同聚类中心的特征点分别与模板图像特征点进行匹配,结合RANSAC算法去除误匹配并统计正确匹配点数量,根据正确匹配的特征点计算从模板图像到待检测图像的单应矩阵从而得到目标检测结果。根据每个目标正确匹配点数量筛选正确的检测结果,并在正确的检测结果中根据目标匹配点数量和目标最多匹配点数量的差值筛选出可抓取目标。检测出可抓取目标之后,使用立体匹配算法得到场景视差图,计算目标的三维坐标,并根据三维坐标与图像中二维坐标的对应关系使用PNP算法计算目标位姿。实验结果表明,基于DPC聚类的多目标检测方法能够在多个相同堆叠目标中准确检测出目标物体并分别计算位姿,有效解决了无序抓取应用中的多目标检测问题。 展开更多
关键词 无序抓取 模板匹配 密度峰值聚类(dpc) 堆叠目标
在线阅读 下载PDF
基于K-IDPC算法的Wi-Fi室内定位方法 被引量:2
7
作者 何洋 吴飞 +2 位作者 贺成成 朱海 毛万葵 《传感器与微系统》 CSCD 2019年第11期46-49,53,共5页
针对目前室内定位依靠Wi-Fi电磁指纹库方法实现室内人员定位进行判别存在误差大以及时效性低的问题,本文提出一种融合K近邻(K-NN)的改进密度峰值聚类(K-IDPC)算法。引入关联系数和K-NN思想,解决了普通密度峰值聚类(DPC)算法对定位数据... 针对目前室内定位依靠Wi-Fi电磁指纹库方法实现室内人员定位进行判别存在误差大以及时效性低的问题,本文提出一种融合K近邻(K-NN)的改进密度峰值聚类(K-IDPC)算法。引入关联系数和K-NN思想,解决了普通密度峰值聚类(DPC)算法对定位数据密度不均衡,聚类中心区分度不高的问题,进而提高了对定位环境的鲁棒性。并结合数据切分算法,对离线电磁数据进行切割,使得大数据集分为若干小数据集,降低了计算复杂度。实验结果表明:提出的室内定位方法,同传统的K均值(K-means)、具有噪声应用的基于密度空间聚类(DBSCAN)、DPC聚类算法相比,能够有效地提高室内定位的效果。 展开更多
关键词 Wi-Fi定位 密度峰值聚类 关联系数 K近邻 数据切割
在线阅读 下载PDF
基于网格空间团的多级同位模式挖掘方法 被引量:3
8
作者 刘宇情 王丽珍 +1 位作者 杨培忠 朴丽莎 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期918-930,共13页
针对传统的多级同位模式挖掘方法未考虑到实际数据分布的网格特性,且从全局到区域的多级模式挖掘框架会导致算法效率低下的问题,提出逆向挖掘多级同位模式的新框架.先挖掘区域同位模式,再由区域同位模式推导出全局同位模式,提出有效的... 针对传统的多级同位模式挖掘方法未考虑到实际数据分布的网格特性,且从全局到区域的多级模式挖掘框架会导致算法效率低下的问题,提出逆向挖掘多级同位模式的新框架.先挖掘区域同位模式,再由区域同位模式推导出全局同位模式,提出有效的剪枝策略提高挖掘效率.考虑真实数据集中数据分布的网格特性,定义实例间的网格邻近关系,提出网格空间团及计算网格空间团的新颖方法.在区域划分阶段,提出基于自适应网格密度峰值聚类的区域划分方法,基于2阶网格空间团的网格相似性来分配簇.在合成和实际数据集上进行大量的实验,验证了提出方法的有效性、高效性和可扩展性,在真实数据集上的剪枝率可以达到78%. 展开更多
关键词 空间数据挖掘 多级同位模式 网格空间团 密度峰值聚类(dpc)
在线阅读 下载PDF
城市社区尺度下COVID-19时空扩散特征与影响因素——以上海疫情为例
9
作者 李周平 葛如一 郭晓爽 《系统管理学报》 CSSCI CSCD 北大核心 2024年第6期1508-1520,共13页
针对新型突发传染病疫情在大型城市传播过程中的区域防控问题,提出了一种能够有效识别局部传播源、划分扩散边界的时空事件聚类模型。以2022年3月上海市新冠疫情为例,研究结果表明:在0.8、1.5和2.5 km这3个尺度上制定区域防控策略能有... 针对新型突发传染病疫情在大型城市传播过程中的区域防控问题,提出了一种能够有效识别局部传播源、划分扩散边界的时空事件聚类模型。以2022年3月上海市新冠疫情为例,研究结果表明:在0.8、1.5和2.5 km这3个尺度上制定区域防控策略能有效控制疫情的近邻扩散与迁移扩散;而热点区域内公交站数量、购物点数量和是否存在三甲医院3个空间风险因子可作为区域防控决策的辅助因素,地铁站数量、有无大型商业中心和有无大型超市3个空间风险因子可辅助预判疫情的迁移扩散路径。 展开更多
关键词 疫情防控 密度峰值聚类 城市社区 时空扩散
在线阅读 下载PDF
密度峰值聚类相关问题的研究 被引量:12
10
作者 杨洁 王国胤 庞紫玲 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期791-801,共11页
相对于其他的密度聚类算法,密度峰值聚类(Density Peaks Clustering,DPC)算法思想简洁新颖,所需参数少,不需要进行迭代求解,而且具有可扩展性.但是,DPC仍然具有一定缺陷,例如存在截断阈值dc的定义模糊以及选取中心点失效等问题.在阐述了... 相对于其他的密度聚类算法,密度峰值聚类(Density Peaks Clustering,DPC)算法思想简洁新颖,所需参数少,不需要进行迭代求解,而且具有可扩展性.但是,DPC仍然具有一定缺陷,例如存在截断阈值dc的定义模糊以及选取中心点失效等问题.在阐述了DPC的算法思想和原理的基础上,分析了DPC算法的缺陷,然后从多个改进的角度对其相关研究工作进行了综述.通过分析DPC与相关理论(数据场、图论、粒计算等)的联系,针对密度峰值的缺点,提出了基于粒计算的DPC算法改进框架,其中包括由细到粗、由细到粗和双向变粒度这三种机制以及基于网格粒化的密度峰值算法框架.最后对DPC今后的研究工作进行了展望,包括动态密度峰值聚类、利用密度峰值研究网络拓扑、处理复杂任务以及改进其他聚类等,希望为DPC的进一步研究提供新思想. 展开更多
关键词 密度聚类 密度峰值 粒计算 图论
在线阅读 下载PDF
复杂高维数据的密度峰值快速搜索聚类算法 被引量:13
11
作者 陈俊芬 张明 赵佳成 《计算机科学》 CSCD 北大核心 2020年第3期79-86,共8页
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了... 机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。 展开更多
关键词 聚类 密度峰值 dpc算法 特征表示 流形距离
在线阅读 下载PDF
基于代表点与K近邻的密度峰值聚类算法 被引量:15
12
作者 张清华 周靖鹏 +1 位作者 代永杨 王国胤 《软件学报》 EI CSCD 北大核心 2023年第12期5629-5648,共20页
密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据... 密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面,DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors,KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果. 展开更多
关键词 聚类分析 密度峰值聚类 代表点 K近邻(KNN)
在线阅读 下载PDF
一种基于密度峰值聚类的图像分割算法 被引量:12
13
作者 赵军 朱荽 +2 位作者 杨雯璟 许彦辉 庞宇 《计算机工程》 CAS CSCD 北大核心 2020年第2期274-278,285,共6页
聚类作为一种有效的图像分割方法,被广泛地应用于计算机视觉领域。相较于其他聚类方法,密度峰值聚类(DPC)具有参数少且能有效识别非球形聚类的特点。基于此,引入信息论中的不确定性度量熵,提出一种改进的DPC图像分割算法。将图像像素点... 聚类作为一种有效的图像分割方法,被广泛地应用于计算机视觉领域。相较于其他聚类方法,密度峰值聚类(DPC)具有参数少且能有效识别非球形聚类的特点。基于此,引入信息论中的不确定性度量熵,提出一种改进的DPC图像分割算法。将图像像素点的颜色空间CIE Lab值作为特征数据,通过计算信息熵求得自适应截断距离以取代经验取值,建立相应的决策图并确定聚类中心总数,归类非聚类中心点,剔除噪声点从而完成图像分割。在Berkeley数据集上的实验结果表明,该算法能较好地实现彩色图像的分割,其平均分割时间和PRI指标分别为14.658 s和0.721。 展开更多
关键词 密度峰值聚类 CIE Lab颜色空间 局部密度 截断距离 相对距离 信息熵
在线阅读 下载PDF
基于聚类与粒子群极限学习机的航空发动机推力估计器设计 被引量:13
14
作者 宋汉强 李本威 +1 位作者 张赟 蒋科艺 《推进技术》 EI CAS CSCD 北大核心 2017年第6期1379-1385,共7页
针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然... 针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然后在每一个子类中,用粒子群极限学习机设计了子推力估计器。在子类推力估计过程中,为使网络拓扑结构最优,用粒子群算法寻找极限学习机的最优隐层神经元数目的方法。训练与测试表明,推力估计测试相对误差最大值为3.06‰,优于传统的RBF(7.25‰)与BP(14.84‰)神经网络方法,能够满足直接推力控制与机载在线实时状态评估的需求,且可将方法扩展到其他不可测参数的估计。 展开更多
关键词 航空发动机 推力估计 快速寻找密度极点聚类 粒子群极限学习机 直接推力控制
在线阅读 下载PDF
基于信号统计模型的变电站半遮挡融合定位方法 被引量:2
15
作者 薛灿 韩强 王智 《电力工程技术》 北大核心 2023年第1期185-192,共8页
变电站存在建筑遮挡和电磁干扰等问题,这导致传统的基于电磁波定位的人员管控方法精度快速下滑。为避免因单传感器定位精度劣化而导致的电力安全管控效率降低问题,研究基于多源信息融合的巡检人员位置估计技术至关重要,而现有融合定位... 变电站存在建筑遮挡和电磁干扰等问题,这导致传统的基于电磁波定位的人员管控方法精度快速下滑。为避免因单传感器定位精度劣化而导致的电力安全管控效率降低问题,研究基于多源信息融合的巡检人员位置估计技术至关重要,而现有融合定位方法大多难以在地图信息未知的条件下鲁棒地选择传感器融合策略,因此文中提出一种基于卫星和近超声信号特征分析的融合定位方法,仅依靠信号统计特征实现环境信息判别并自适应选取融合策略。首先,利用多传感器信号特征统计模型构建指纹库,并基于t分布随机近邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)降维算法和密度峰值聚类(density peaks clustering, DPC)算法处理指纹库数据。其次,依据聚类结果搭建反向传播(back propagation, BP)神经网络,将信号环境特征与卡尔曼滤波器的参数映射。最后,使用神经网络输出优化基于卡尔曼滤波的多源定位切换模型,形成自适应的融合定位方法。利用真实变电站半遮挡环境采集数据进行实验,结果表明,相较于未知环境信息、已知环境信息的融合定位方法,所提出的方法在地图信息未知的情况下节约了地图标定信息,实现了高鲁棒的位置估计。 展开更多
关键词 变电站半遮挡环境 信号特征 近超声 t分布随机近邻嵌入(t-SNE) 密度峰值聚类(dpc) 融合定位
在线阅读 下载PDF
基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制 被引量:21
16
作者 张赟宁 石泽 《现代电力》 北大核心 2020年第1期35-41,共7页
随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为... 随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为基础计算节点电气距离,根据电气距离构建节点相似度矩阵,并采用快速搜索与发现密度峰值聚类算法对配电网进行快速分区;然后考虑本地光伏独立调压能力的不足,提出了一种先无功后有功的电压分区协调控制策略;最后通过IEEE33配电网算例的仿真结果验证了该分区方法的快速性和电压分区协调控制策略的有效性。 展开更多
关键词 电压集中控制 综合电压灵敏度 电气距离 快速搜索与发现密度峰值聚类 电压分区协调控制
在线阅读 下载PDF
基于加权共享近邻与累加序列的密度峰值算法 被引量:6
17
作者 王芙银 张德生 肖燕婷 《计算机工程》 CAS CSCD 北大核心 2022年第4期61-69,共9页
密度峰值聚类(DPC)算法在对密度分布差异较大的数据进行聚类时效果不佳,聚类结果受局部密度及其相对距离影响,且需要手动选取聚类中心,从而降低了算法的准确性与稳定性。为此,提出一种基于加权共享近邻与累加序列的密度峰值算法DPC-WSN... 密度峰值聚类(DPC)算法在对密度分布差异较大的数据进行聚类时效果不佳,聚类结果受局部密度及其相对距离影响,且需要手动选取聚类中心,从而降低了算法的准确性与稳定性。为此,提出一种基于加权共享近邻与累加序列的密度峰值算法DPC-WSNN。基于加权共享近邻重新定义局部密度的计算方式,以避免截断距离选取不当对聚类效果的影响,同时有效处理不同类簇数据集分布不均的问题。在原有DPC算法决策值的基础上,生成一组累加序列,将累加序列的均值作为聚类中心和非聚类中心的临界点从而实现聚类中心的自动选取。利用人工合成数据集与UCI上的真实数据集测试与评估DPC-WSNN算法,并将其与FKNN-DPC、DPC、DBSCAN等算法进行比较,结果表明,DPC-WSNN算法具有更好的聚类表现,聚类准确率较高,鲁棒性较强。 展开更多
关键词 密度峰值聚类算法 局部密度 加权共享近邻 累加序列 聚类中心
在线阅读 下载PDF
基于SIFT特征检测和密度峰值聚类的太阳活动区自动检测算法研究 被引量:3
18
作者 蒋博 刘磊 +4 位作者 郑胜 杨珊珊 曾曙光 黄瑶 罗骁域 《天文学报》 CAS CSCD 北大核心 2022年第2期63-71,共9页
太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密... 太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory,SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明,SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区. 展开更多
关键词 太阳:磁场 太阳活动区 尺度不变特征变换 密度峰值聚类算法
在线阅读 下载PDF
密度峰值聚类算法研究进展 被引量:26
19
作者 徐晓 丁世飞 丁玲 《软件学报》 EI CSCD 北大核心 2022年第5期1800-1816,共17页
密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起... 密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起了学者们的极大兴趣,并得到了快速发展.首先阐述DPC的基本理论,并通过与经典聚类算法比较,分析了DPC的特点;其次,分别从聚类精度和计算复杂度两个角度分析了DPC的弊端及其优化方法,包括局部密度优化、分配策略优化、多密度峰优化以及计算复杂度优化,并介绍了每个类别的主要代表算法;最后介绍了DPC在不同领域中的相关应用研究.对DPC的优缺点提供了全面的理论分析,并对DPC的优化以及应用进行了全面阐述.还试图找出进一步的挑战来促进DPC研究发展. 展开更多
关键词 密度峰值聚类 聚类精度 计算复杂度 应用
在线阅读 下载PDF
基于子簇融合和线性判别分析的密度峰值聚类算法 被引量:5
20
作者 刘小康 张菁 张延迟 《传感器与微系统》 CSCD 北大核心 2021年第12期133-136,140,共5页
密度峰值聚类(DPC)算法有能够发现非球形簇等优点。但在算法中,局部密度和最近邻距离计算易忽略样本间相关性,并且算法在高维数据集上聚类效果较差。针对上述问题,提出一种基于子簇融合和线性判别分析的DPC算法(SCF-LDA-DPC)。首先,引... 密度峰值聚类(DPC)算法有能够发现非球形簇等优点。但在算法中,局部密度和最近邻距离计算易忽略样本间相关性,并且算法在高维数据集上聚类效果较差。针对上述问题,提出一种基于子簇融合和线性判别分析的DPC算法(SCF-LDA-DPC)。首先,引入样本间Pearson相关系数构造加权高斯核密度估计函数计算局部密度。其次,设计一种子簇融合策略,避免数据错误分配,优化算法容错性差缺陷。最后,引入LDA算法对高维数据降维,提高DPC算法鲁棒性和准确性。多个数据集实验结果表明:SCF-LDA-DPC算法在聚类精度和聚类性能方面明显优于其他优秀算法。 展开更多
关键词 密度峰值聚类算法 Pearson相关系数 子簇融合 线性判别分析
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部