文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC...文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。展开更多
相对于其他的密度聚类算法,密度峰值聚类(Density Peaks Clustering,DPC)算法思想简洁新颖,所需参数少,不需要进行迭代求解,而且具有可扩展性.但是,DPC仍然具有一定缺陷,例如存在截断阈值dc的定义模糊以及选取中心点失效等问题.在阐述了...相对于其他的密度聚类算法,密度峰值聚类(Density Peaks Clustering,DPC)算法思想简洁新颖,所需参数少,不需要进行迭代求解,而且具有可扩展性.但是,DPC仍然具有一定缺陷,例如存在截断阈值dc的定义模糊以及选取中心点失效等问题.在阐述了DPC的算法思想和原理的基础上,分析了DPC算法的缺陷,然后从多个改进的角度对其相关研究工作进行了综述.通过分析DPC与相关理论(数据场、图论、粒计算等)的联系,针对密度峰值的缺点,提出了基于粒计算的DPC算法改进框架,其中包括由细到粗、由细到粗和双向变粒度这三种机制以及基于网格粒化的密度峰值算法框架.最后对DPC今后的研究工作进行了展望,包括动态密度峰值聚类、利用密度峰值研究网络拓扑、处理复杂任务以及改进其他聚类等,希望为DPC的进一步研究提供新思想.展开更多
密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据...密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面,DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors,KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.展开更多
太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密...太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory,SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明,SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区.展开更多
密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起...密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起了学者们的极大兴趣,并得到了快速发展.首先阐述DPC的基本理论,并通过与经典聚类算法比较,分析了DPC的特点;其次,分别从聚类精度和计算复杂度两个角度分析了DPC的弊端及其优化方法,包括局部密度优化、分配策略优化、多密度峰优化以及计算复杂度优化,并介绍了每个类别的主要代表算法;最后介绍了DPC在不同领域中的相关应用研究.对DPC的优缺点提供了全面的理论分析,并对DPC的优化以及应用进行了全面阐述.还试图找出进一步的挑战来促进DPC研究发展.展开更多
文摘文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。
文摘相对于其他的密度聚类算法,密度峰值聚类(Density Peaks Clustering,DPC)算法思想简洁新颖,所需参数少,不需要进行迭代求解,而且具有可扩展性.但是,DPC仍然具有一定缺陷,例如存在截断阈值dc的定义模糊以及选取中心点失效等问题.在阐述了DPC的算法思想和原理的基础上,分析了DPC算法的缺陷,然后从多个改进的角度对其相关研究工作进行了综述.通过分析DPC与相关理论(数据场、图论、粒计算等)的联系,针对密度峰值的缺点,提出了基于粒计算的DPC算法改进框架,其中包括由细到粗、由细到粗和双向变粒度这三种机制以及基于网格粒化的密度峰值算法框架.最后对DPC今后的研究工作进行了展望,包括动态密度峰值聚类、利用密度峰值研究网络拓扑、处理复杂任务以及改进其他聚类等,希望为DPC的进一步研究提供新思想.
文摘密度峰值聚类(density peaks clustering,DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而,DPC仍存在些许不足:一方面,DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面,DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors,KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.
文摘太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory,SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明,SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区.
文摘密度峰值聚类(density peaks clustering,DPC)算法是聚类分析中基于密度的一种新兴算法,该算法考虑局部密度和相对距离绘制决策图,快速识别簇中心,完成聚类.DPC具有唯一的输入参数,且无需先验知识,也无需迭代.自2014年提出以来,DPC引起了学者们的极大兴趣,并得到了快速发展.首先阐述DPC的基本理论,并通过与经典聚类算法比较,分析了DPC的特点;其次,分别从聚类精度和计算复杂度两个角度分析了DPC的弊端及其优化方法,包括局部密度优化、分配策略优化、多密度峰优化以及计算复杂度优化,并介绍了每个类别的主要代表算法;最后介绍了DPC在不同领域中的相关应用研究.对DPC的优缺点提供了全面的理论分析,并对DPC的优化以及应用进行了全面阐述.还试图找出进一步的挑战来促进DPC研究发展.