期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于Deep-Semi-NMF的苹果斑点落叶病检测方法 被引量:1
1
作者 傅卓军 胡政 +2 位作者 邓阳君 龙陈锋 朱幸辉 《智慧农业(中英文)》 CSCD 2024年第6期144-154,共11页
[目的/意义]苹果斑点落叶病易导致苹果树叶过早脱落,从而影响苹果品质和产量。因此,如何准确检测此病一直是苹果树病害精准防治的热点问题。由于逆光等因素影响,传统基于图像分割的病斑检测方法难以在复杂背景下准确检测病斑区域边界,... [目的/意义]苹果斑点落叶病易导致苹果树叶过早脱落,从而影响苹果品质和产量。因此,如何准确检测此病一直是苹果树病害精准防治的热点问题。由于逆光等因素影响,传统基于图像分割的病斑检测方法难以在复杂背景下准确检测病斑区域边界,亟需发展苹果斑点落叶病检测新方法,助力苹果树病害精准防治。[方法]针对上述问题,本研究从图像异常检测的角度出发,考虑复杂背景干扰,采用深度半非负矩阵分解理论,结合鲁棒性好的马氏距离度量,提出一种新的深度半非负矩阵分解的马氏距离异常检测方法(Deep Semi-Non-Negative Ma⁃trix Factorization-Based Mahalanobis Distance-Anomaly Detector,DSNMFMAD)。该方法首先利用深度非负矩阵分解(Deep Semi-Non-Negative Matrix Factorization,DSNMF)提取图像中低秩的背景部分和稀疏的异常部分。然后采用基于奇异值分解特征子空间的马氏距离构建病斑检测器,检测器通过计算异常部分每个像元的异常度来标记病斑。最后,分别构建了实验室和自然条件下的两个苹果斑点落叶病数据集,用以验证提出方法的有效性。[结果和讨论]DSNMFMAD在实验室条件和自然条件下对苹果斑点落叶病的识别准确率分别达到了99.8%和87.8%;平均检测速度为0.087和0.091 s/幅。相较于4种经典的异常检测方法和1种深度学习模型,本研究所提出方法的检测准确率在实验室条件下分别提高了0.2%、37.9%、10.3%、0.4%和24.5%;在自然条件下分别提高了2.5%、32.7%、5%、14.8%和3.5%。[结论]本研究提出的DSNMFMAD能够通过DSNMF有效地将图像中的异常部分提取出来,并利用构建的病斑检测器准确地将苹果斑点落叶病位置检测出来。即使在复杂背景条件下,该方法亦获得了比对比方法更高的检测准确度,展现出了优异的病斑检测性能,为苹果斑点落叶病的检测与防治提供了技术参考依据。 展开更多
关键词 图像分割 苹果斑点落叶病 异常检测 深度半非负矩阵分解 马氏距离
在线阅读 下载PDF
结合矩阵补全的宽度协同过滤推荐算法 被引量:3
2
作者 史加荣 何攀 《智能系统学报》 CSCD 北大核心 2024年第2期299-306,共8页
协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目... 协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目评分矩阵进行补全,再利用补全后的矩阵对已评分的用户和项目分别寻找其近邻项,进而构造用户与项目的评分协同向量,最后使用宽度学习系统来构建用户项目与评分之间的复杂的非线性关系。在MovieLens和filmtrust数据集上对所提出算法的有效性进行检验。试验结果表明,与当前最先进的方法相比,该方法能够有效地缓解数据稀疏性问题,具有较低的计算复杂度,在一定程度上提升了推荐系统的性能。 展开更多
关键词 推荐系统 宽度学习系统 矩阵补全 宽度协同过滤 协同过滤 深度矩阵分解 数据稀疏性 深度学习
在线阅读 下载PDF
基于深度学习的混合兴趣点推荐算法 被引量:12
3
作者 冯浩 黄坤 +3 位作者 李晶 高榕 刘东华 宋成芳 《电子与信息学报》 EI CSCD 北大核心 2019年第4期880-887,共8页
针对现有兴趣点推荐的初始化和忽视评论信息语义上下文信息的问题,将深度学习融入推荐系统中已经成为兴趣点推荐研究的热点之一。该文提出一种基于深度学习的混合兴趣点推荐模型(MFM-HNN)。该模型基于神经网络融合评论信息与用户签到信... 针对现有兴趣点推荐的初始化和忽视评论信息语义上下文信息的问题,将深度学习融入推荐系统中已经成为兴趣点推荐研究的热点之一。该文提出一种基于深度学习的混合兴趣点推荐模型(MFM-HNN)。该模型基于神经网络融合评论信息与用户签到信息来提高兴趣点推荐的性能。具体地,利用卷积神经网络学习评论信息的特征表示,利用降噪自动编码对用户签到信息进行初始化。进而,基于扩展的矩阵分解模型融合评论信息特征和用户签到信息的初始值进行兴趣点推荐。在真实签到数据集上进行实验,结果表明所提MFM-HNN模型相比其他先进的兴趣点推荐具有更好的推荐性能。 展开更多
关键词 推荐算法 兴趣点 矩阵分解 神经网络 深度学习
在线阅读 下载PDF
改进粒子滤波算法在深空红外小目标跟踪中的应用 被引量:9
4
作者 叶有时 刘淑芬 +4 位作者 孙强 刘鸿瑾 刘波 杨桦 吴一帆 《电子学报》 EI CAS CSCD 北大核心 2015年第8期1506-1512,共7页
非负矩阵分解具有较好的特征提取性能,广泛应用于数据融合领域,而粒子滤波则是一种处理非线性和非高斯动态系统状态估计的有效方法.该文结合两种算法的优点,提出了一种基于改进粒子滤波的红外小目标跟踪算法.利用NMF融合当前与之前的粒... 非负矩阵分解具有较好的特征提取性能,广泛应用于数据融合领域,而粒子滤波则是一种处理非线性和非高斯动态系统状态估计的有效方法.该文结合两种算法的优点,提出了一种基于改进粒子滤波的红外小目标跟踪算法.利用NMF融合当前与之前的粒子分布权重,减小经典粒子滤波退化发散带来的精度误差.避免了目标遮挡及暂时消失带来的跟踪错误.仿真实验证明本文算法相对于经典粒子滤波,具有更好的跟踪精度和稳定性. 展开更多
关键词 深空 红外小目标跟踪 粒子滤波 非负矩阵分解
在线阅读 下载PDF
因子分解机算法在基于深度数据包检测的手机应用推荐中的应用 被引量:3
5
作者 孙良君 范剑锋 +1 位作者 杨婉琪 史颖欢 《计算机应用》 CSCD 北大核心 2016年第2期307-310,共4页
为了从网络数据包中抽取相关特征进行手机应用推荐,使用江苏电信运营商在互联网服务提供商(ISP)机房抽取的网络深度数据包数据,从中抽取运营商所关心的热点手机用户的App访问信息,然后使用基于矩阵分解(包括奇异值分解(SVD)和非负矩阵分... 为了从网络数据包中抽取相关特征进行手机应用推荐,使用江苏电信运营商在互联网服务提供商(ISP)机房抽取的网络深度数据包数据,从中抽取运营商所关心的热点手机用户的App访问信息,然后使用基于矩阵分解(包括奇异值分解(SVD)和非负矩阵分解(NMF))的推荐算法、奇异值分解推荐算法以及因子分解机推荐算法进行手机App推荐。实验表明,因子分解机算法取得了较好的推荐效果。这说明因子分解机在手机应用推荐的场景中可以更好地描述用户和物品之间的隐含关联。 展开更多
关键词 手机App 深度数据包检测 奇异值分解 非负矩阵分解 因子分解机
在线阅读 下载PDF
融合矩阵补全与深度矩阵分解的推荐算法 被引量:4
6
作者 史加荣 李金红 《计算机应用研究》 CSCD 北大核心 2021年第8期2376-2380,共5页
深度矩阵分解采用深层非线性映射,从而突破了矩阵分解中双线性关系影响推荐系统性能的瓶颈,但它没有考虑用户对未评分项目的偏好,且对于稀疏性较高的大规模数据其推荐性能不具有优势,为此提出一种融合矩阵补全与深度矩阵分解的推荐算法... 深度矩阵分解采用深层非线性映射,从而突破了矩阵分解中双线性关系影响推荐系统性能的瓶颈,但它没有考虑用户对未评分项目的偏好,且对于稀疏性较高的大规模数据其推荐性能不具有优势,为此提出一种融合矩阵补全与深度矩阵分解的推荐算法。首先通过矩阵补全模型将原始评分矩阵中的未知元素进行填补,然后依据补全后的矩阵,利用深度学习模型分别构建用户和项目潜在向量。最后,在MovieLens和SUSHI数据集上进行测试,实验结果表明,与深度矩阵分解相比,所提算法显著地提高了推荐系统的性能。 展开更多
关键词 推荐系统 深度矩阵分解 矩阵补全 矩阵分解 深度学习
在线阅读 下载PDF
基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案 被引量:14
7
作者 洪翠 连淑婷 +1 位作者 黄晟 郭谋发 《电力自动化设备》 EI CSCD 北大核心 2022年第6期8-15,29,共9页
为快速检测及可靠识别直流配电网故障,提出一种基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案。通过最小二乘法非线性拟合故障电流局部的相频谱函数,基于此在一定的条件下修改经验小波函数的相频响应,使之尽... 为快速检测及可靠识别直流配电网故障,提出一种基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案。通过最小二乘法非线性拟合故障电流局部的相频谱函数,基于此在一定的条件下修改经验小波函数的相频响应,使之尽可能与故障电流的局部相频特性相匹配;运用改进经验小波变换分解电流,计算细节分量c_(3)的模极大值,构造故障检测判据;设计一种权重自学习网络,依据数据对分类任务的重要性分配不同的权重,嵌套于多视角深度矩阵分解模型前端,运用改进多视角深度矩阵分解模型对电流分量c_(1)—c_(3)、极间电压u_(dc)这4个视角的数据进行故障特征提取,通过软分配层实现故障的分类。仿真测试结果表明,所提故障检测方案能够满足故障检测速动性、可靠性的要求,故障分类准确度高,为后续故障处理奠定了良好基础。 展开更多
关键词 直流配电网 故障检测与分类 改进经验小波变换 改进多视角深度矩阵分解
在线阅读 下载PDF
基于需求预测的主动服务推荐方法 被引量:3
8
作者 刘志中 张振兴 +2 位作者 海燕 郭思慧 刘永利 《计算机工程》 CAS CSCD 北大核心 2020年第2期96-102,共7页
在智能计算领域,网络中可用服务数量与类型的快速增长,使用户更依赖于服务完成各种业务,然而当前“请求-响应”被动式的服务模式严重影响了用户体验与资源利用率。为智能感知用户需求并主动为用户推荐合适的服务,通过引入需求预测过程,... 在智能计算领域,网络中可用服务数量与类型的快速增长,使用户更依赖于服务完成各种业务,然而当前“请求-响应”被动式的服务模式严重影响了用户体验与资源利用率。为智能感知用户需求并主动为用户推荐合适的服务,通过引入需求预测过程,提出一种主动服务推荐方法。利用矩阵分解算法从大量历史服务使用数据中提取用户特征和服务特征,据此训练深度学习模型并预测用户的服务需求,进而为用户推荐其所需要的服务。基于真实数据的实验结果表明,该方法较单一的矩阵分解模型和深度神经网络模型具有更高的服务推荐准确性和稳定性。 展开更多
关键词 需求预测 主动服务 服务推荐 矩阵分解 深度学习
在线阅读 下载PDF
深度协同过滤推荐模型研究 被引量:3
9
作者 纪佳琪 姜学东 《计算机应用与软件》 北大核心 2020年第7期240-245,共6页
近些年深度学习在计算机视觉、语音识别、自然语言处理等领域取得了巨大成就,然而在推荐系统中应用深度学习的研究还处于起步阶段。为了充分利用深度学习的强大特征学习能力,设计一个基于深度神经网络的协同过滤推荐模型。利用隐式数据... 近些年深度学习在计算机视觉、语音识别、自然语言处理等领域取得了巨大成就,然而在推荐系统中应用深度学习的研究还处于起步阶段。为了充分利用深度学习的强大特征学习能力,设计一个基于深度神经网络的协同过滤推荐模型。利用隐式数据建立用户向量和物品向量,通过对用户向量和物品向量深度表征,非线性地学习了用户和物品间的内在联系。在两个不同数据集上的实验表明,该模型在HR和NDCG评价指标上比基线模型有较大提升。 展开更多
关键词 推荐系统 深度学习 协同过滤 矩阵分解
在线阅读 下载PDF
联合长短时记忆递归神经网络和非负矩阵分解的语音混响消除方法 被引量:11
10
作者 刘斌 陶建华 《信号处理》 CSCD 北大核心 2017年第3期268-272,共5页
本文提出了一种联合长短时记忆递归神经网络和非负矩阵分解方法对单通道语音进行混响消除;对语音信号的对数功率谱建模抑制混响干扰。首先通过长短时记忆递归神经网络估计对数功率谱,这种模型结构能捕获整个音频序列的信息重构纯净语音... 本文提出了一种联合长短时记忆递归神经网络和非负矩阵分解方法对单通道语音进行混响消除;对语音信号的对数功率谱建模抑制混响干扰。首先通过长短时记忆递归神经网络估计对数功率谱,这种模型结构能捕获整个音频序列的信息重构纯净语音的对数功率谱,然后通过非负矩阵分解方法对重构的对数功率谱进行后处理抑制过平滑问题;实验结果表明所提方法可以有效抑制语音信号中的混响干扰,本文方法的各种性能指标优于基线方法。 展开更多
关键词 单通道混响消除 长短时记忆递归神经网络 非负矩阵分解 深度学习
在线阅读 下载PDF
HRS-DC:基于深度学习的混合推荐模型 被引量:8
11
作者 刘振鹏 尹文召 +1 位作者 王文胜 孙静薇 《计算机工程与应用》 CSCD 北大核心 2020年第14期169-175,共7页
针对传统的矩阵分解算法,仅利用评分信息作为推荐依据,当评分数据稀疏时,不能准确获取隐式反馈,影响推荐的准确性,充分利用辅助信息进行隐式特征的提取成为研究热点之一,提出一种基于深度学习的推荐模型HRS-DC,利用深度神经网络和卷积... 针对传统的矩阵分解算法,仅利用评分信息作为推荐依据,当评分数据稀疏时,不能准确获取隐式反馈,影响推荐的准确性,充分利用辅助信息进行隐式特征的提取成为研究热点之一,提出一种基于深度学习的推荐模型HRS-DC,利用深度神经网络和卷积神经网络从辅助信息中分别提取出用户和项目的隐性特征向量,再将特征向量经过改进的神经协同过滤得出新的评分矩阵。通过在三个真实的数据集上进行验证,与概率矩阵分解(PMF)、协同过滤主题回归(CTR)、协同过滤深度学习(CDL)、卷积矩阵分解ConvMF算法相比提高了评分预测的准确性,也在一定程度上缓解了冷启动问题。 展开更多
关键词 深度学习 神经网络 矩阵分解 辅助信息 协同过滤
在线阅读 下载PDF
混合深层协同过滤的SVD++推荐方法 被引量:3
12
作者 汪赫瑜 夏航 任建华 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2020年第6期524-532,共9页
为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜... 为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜在特征表示,并在提取项目特征表示时加入预训练的词嵌入模型考虑词语之间的语义关系.在数据集MovieLens-1M与MovieLens-10M的实验.结果表明:相比于传统算法、深度学习算法以及所提模型的变体,所提模型更有效地提取潜在特征表示并提高预测评分精度. 展开更多
关键词 推荐系统 深度学习 附加栈式降噪自编码器 收缩降噪自编码器 矩阵分解
在线阅读 下载PDF
新型深度矩阵分解及其在推荐系统中的应用 被引量:1
13
作者 史加荣 李金红 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期171-182,共12页
个性化推荐在网络消费平台上发挥着越来越重要的角色。低秩和深度矩阵分解已广泛应用于推荐系统,并使推荐性能得以优化。为了克服传统矩阵分解的双线性性,深度矩阵分解基于用户和项目的特征向量,建立深度神经网络模型。现有方法在数据... 个性化推荐在网络消费平台上发挥着越来越重要的角色。低秩和深度矩阵分解已广泛应用于推荐系统,并使推荐性能得以优化。为了克服传统矩阵分解的双线性性,深度矩阵分解基于用户和项目的特征向量,建立深度神经网络模型。现有方法在数据规模较大且稀疏性较高时,表现出性能不佳及运行时间较长。为此,提出了一种新型深度矩阵分解模型。该模型的输入为用户和项目的隐特征向量,网络结构由两个并行的多层感知机和一个用于预测的加权内积算子组成。对于所建立的模型,设计了两阶段求解方法。先利用低秩矩阵拟合算法对缺失数据进行补全,从而确定了两个隐特征矩阵。再将所构建的特征工程作为深度神经网络的输入,建立输出为预测评分的非线性映射。在公开的推荐数据集上验证了所提模型的有效性。实验结果表明:与传统矩阵分解方法相比,所提方法极大地提高了推荐性能;与现有的深度矩阵分解方法相比,运行时间得到显著降低。 展开更多
关键词 推荐系统 低秩矩阵拟合 深度矩阵分解 深度神经网络 深度学习
在线阅读 下载PDF
融合了LSTM和PMF的推荐算法 被引量:5
14
作者 曾安 赵恢真 《计算机工程与应用》 CSCD 北大核心 2020年第19期68-75,共8页
推荐系统是帮助用户在海量的数据中快速发掘出他们感兴趣内容的最重要的技术之一。稀疏性和冷启动是推荐系统面临的主要问题。针对稀疏性问题,已有多种推荐算法考虑利用额外的辅助信息,如评论、摘要或概要等来提高预测准确性。这些算法... 推荐系统是帮助用户在海量的数据中快速发掘出他们感兴趣内容的最重要的技术之一。稀疏性和冷启动是推荐系统面临的主要问题。针对稀疏性问题,已有多种推荐算法考虑利用额外的辅助信息,如评论、摘要或概要等来提高预测准确性。这些算法确实已经在一定程度上提高了预测准确性,但是,已有的算法大都是基于词袋模型,对这些辅助信息的理解和利用缺乏深度,留于表面。提出了一种新型的推荐系统算法:深度协同过滤算法(DCF)。DCF集成了长短期记忆网络(LSTM)和概率矩阵分解(PMF)。该算法不仅能够基于用户评分学习用户特征,而且能深度挖掘辅助信息,学习到更精确的物品特征。经过在真实数据集MovieLens100K和1M上的验证,结果表明DCF算法的根均方误差比现有算法分别降低了2.54%和3.96%。 展开更多
关键词 深度协同过滤 长短期记忆网络 概率矩阵分解 推荐系统
在线阅读 下载PDF
基于非负矩阵分解和长短时记忆网络的单通道语音分离 被引量:4
15
作者 崔建峰 邓泽平 +1 位作者 申飞 史文武 《科学技术与工程》 北大核心 2019年第12期206-210,共5页
为了解决语音分离中非负矩阵分解(non-negative matrix factorization,NMF)、深度神经网络(deep neural network,DNN)等算法没有考虑语音时序相关性的问题。结合NMF和长短时记忆网络(long short-term memory,LSTM)算法提出NMFLSTM单通... 为了解决语音分离中非负矩阵分解(non-negative matrix factorization,NMF)、深度神经网络(deep neural network,DNN)等算法没有考虑语音时序相关性的问题。结合NMF和长短时记忆网络(long short-term memory,LSTM)算法提出NMFLSTM单通道语音分离算法:将语音信号的幅度谱作为模型的输入特征,通过训练NMF和LSTM模型获得目标语音的基矩阵和系数矩阵,并对其结果进行语音重构最终实现语音分离。实验结果表明:相比于未考虑语音时间连续性的算法,使用NMFLSTM算法分离语音的客观语音质量评估值(perceptual evaluation of speech quality,PESQ)有明显提升,其最大值超过3. 1,获得良好的分离效果。 展开更多
关键词 语音分离 幅度谱 非负矩阵分解 深度学习 长短时记忆网络
在线阅读 下载PDF
S-SmDAERS模型的深度推荐系统应用研究
16
作者 孙红 鹿梅珂 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1608-1612,共5页
深度学习因在学习用户、物品数据潜在特征和表面特征上的优势,被广泛地应用于推荐系统中.而在一般的深度学习推荐系统中,往往都无法兼顾训练时间和推荐质量,为此,本文在传统的自动编码器的基础上,加入了稀疏和边缘降噪约束,将衍生出的... 深度学习因在学习用户、物品数据潜在特征和表面特征上的优势,被广泛地应用于推荐系统中.而在一般的深度学习推荐系统中,往往都无法兼顾训练时间和推荐质量,为此,本文在传统的自动编码器的基础上,加入了稀疏和边缘降噪约束,将衍生出的稀疏边缘降噪自动编码器(SmDAE)进行堆叠并应用于推荐系统中,提出了一种基于堆叠稀疏边缘降噪自动编码器的协同推荐方法(S-SmDAERS).实验证明,该模型较一般的深度推荐算法具有更好的性能. 展开更多
关键词 推荐系统 自动编码器 深度学习 概率矩阵分解
在线阅读 下载PDF
一种基于深度学习的混合推荐算法 被引量:18
17
作者 曾旭禹 杨燕 +2 位作者 王淑营 何太军 陈剑波 《计算机科学》 CSCD 北大核心 2019年第1期126-130,共5页
推荐系统在电子商务的发展中发挥着越来越重要的作用,但用户对物品评分数据的稀疏性往往是推荐精度较低的重要原因。目前通常采用推荐技术对辅助信息进行处理,以缓解用户评价的稀疏性,并提高预测评分精度。通过相关模型,可以利用文本数... 推荐系统在电子商务的发展中发挥着越来越重要的作用,但用户对物品评分数据的稀疏性往往是推荐精度较低的重要原因。目前通常采用推荐技术对辅助信息进行处理,以缓解用户评价的稀疏性,并提高预测评分精度。通过相关模型,可以利用文本数据来提取物品的隐藏特征。最近,深度学习算法快速发展,因此文中选用了一种具有强大特征提取能力的新型深度网络架构——变分自编码器(Variational AutoEncoder,VAE)。通过将无监督变分自编码融合到概率矩阵分解(Probability Matrix Factorization,PMF)中,构建了一种感知上下文的新型推荐模型——变分矩阵分解(Variational AutoEncoder Matrix Factorization,VAEMF)。首先使用TD-IDF对物品的评价文档进行数据预处理,然后对处理后的数据使用VAE捕获物品的上下文信息特征,最后使用概率矩阵分解进一步提高预测评分精度。在两个真实数据集上的实验结果验证了所提方法相较于自编码算法及概率矩阵分解算法的优势。 展开更多
关键词 推荐系统 深度学习 变分自编码 矩阵分析
在线阅读 下载PDF
基于深度图正则化矩阵分解的多视图聚类算法 被引量:7
18
作者 刘相男 丁世飞 王丽娟 《智能系统学报》 CSCD 北大核心 2022年第1期158-169,共12页
针对现实社会中由多种表示或视图组成的多视图数据广泛存在的问题,深度矩阵分解模型因其能够挖掘数据的层次信息而备受关注,但该模型忽略了数据的几何结构信息。为解决以上问题,本文提出基于深度图正则化矩阵分解的多视图聚类算法,通过... 针对现实社会中由多种表示或视图组成的多视图数据广泛存在的问题,深度矩阵分解模型因其能够挖掘数据的层次信息而备受关注,但该模型忽略了数据的几何结构信息。为解决以上问题,本文提出基于深度图正则化矩阵分解的多视图聚类算法,通过获取每个视图的局部结构信息和全局结构信息在逐层分解中加入两个图正则化限制,保护多视图数据的几何结构信息,同时将视图的权重与特征表示矩阵进行结合获得共识表示矩阵,最大化视角间的互补性,保证数据的一致性和差异性。除此之外,本文使用迭代更新变量的方法最小化目标函数,不断优化模型并进行收敛性分析。将本文算法和多个算法在三个人脸数据集和两个图像数据集上运行,通过多项指标的对比可以看出本文提出的算法具备良好的性能表现。 展开更多
关键词 多视图聚类 深度矩阵分解 几何结构 图正则化 矩阵分解 多视图表示学习 层次结构信息 深度学习
在线阅读 下载PDF
基于深度学习的课程推荐模型 被引量:8
19
作者 厉小军 柳虹 +2 位作者 施寒潇 朱柳青 张亚辉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第11期2139-2145,2162,共8页
针对网络课程推荐中数据稀疏和推荐效果不佳的问题,将深度学习引入课程推荐,提出基于辅助信息的神经网络模型(IUNeu).该模型在已有神经矩阵分解模型(NeuMF)的基础上,结合用户信息和课程信息,并考虑它们之间的相互作用关系,以提升模型表... 针对网络课程推荐中数据稀疏和推荐效果不佳的问题,将深度学习引入课程推荐,提出基于辅助信息的神经网络模型(IUNeu).该模型在已有神经矩阵分解模型(NeuMF)的基础上,结合用户信息和课程信息,并考虑它们之间的相互作用关系,以提升模型表示用户和课程的准确性.爬取慕课网(MOOC)上的学习数据进行实验,结果表明,随着向量长度和推荐课程数的增加,IUNeu模型的性能增长速度较NeuMF模型更快;不同的消极采样量对2个模型的影响较大,模型性能随着消极采样量的增加而增加,当采样量达到一定值时,变化趋于稳定;IUNeu模型比NeuMF模型具有更高的收敛速度.在IUNeu模型中加入更多课程特征信息,可以进一步提高IUNeu模型的推荐质量. 展开更多
关键词 课程推荐 深度学习 矩阵分解 协同过滤 神经网络
在线阅读 下载PDF
基于深层神经网络的多特征关联声学建模方法 被引量:6
20
作者 范正光 屈丹 +1 位作者 闫红刚 张文林 《计算机研究与发展》 EI CSCD 北大核心 2017年第5期1036-1044,共9页
针对不同声学特征之间的信息互补性以及声学建模中各任务间的关联性,提出了一种多特征关联的深层神经网络声学建模方法,该方法首先借鉴深层神经网络(deep neural network,DNN)多模态以及多任务学习思想,通过共享DNN部分隐含层为不同特... 针对不同声学特征之间的信息互补性以及声学建模中各任务间的关联性,提出了一种多特征关联的深层神经网络声学建模方法,该方法首先借鉴深层神经网络(deep neural network,DNN)多模态以及多任务学习思想,通过共享DNN部分隐含层为不同特征声学模型间建立关联,从而挖掘不同学习任务间隐含的共同解释性因素,实现知识迁移以及性能的相互促进;其次利用低秩矩阵分解方法减少模型估计参数的数量,加快模型训练速度,并对不同特征的识别结果采用ROVER(recognizer output voting error reduction)融合算法进行融合,进一步提高系统识别性能.基于TIMIT的连续语音识别实验表明,采用关联声学建模方法,不同特征的识别性能均要优于独立建模时的识别性能.在音素错误率(phone error rates,PER)指标上,关联声学建模下的ROVER融合结果要比独立建模下的ROVER融合结果相对降低约4.6%. 展开更多
关键词 语音识别 深层神经网络 声学模型 低秩矩阵分解 融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部