期刊文献+
共找到3,110篇文章
< 1 2 156 >
每页显示 20 50 100
Automatic Calcified Plaques Detection in the OCT Pullbacks Using Convolutional Neural Networks 被引量:2
1
作者 Chunliu He Yifan Yin +2 位作者 Jiaqiu Wang Biao Xu Zhiyong Li 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期109-110,共2页
Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the detai... Background Coronary artery calcification is a well-known marker of atherosclerotic plaque burden.High-resolution intravascular optical coherence tomography(OCT)imaging has shown the potential to characterize the details of coronary calcification in vivo.In routine clinical practice,it is a time-consuming and laborious task for clinicians to review the over 250 images in a single pullback.Besides,the imbalance label distribution within the entire pullbacks is another problem,which could lead to the failure of the classifier model.Given the success of deep learning methods with other imaging modalities,a thorough understanding of calcified plaque detection using Convolutional Neural Networks(CNNs)within pullbacks for future clinical decision was required.Methods All 33 IVOCT clinical pullbacks of 33 patients were taken from Affiliated Drum Tower Hospital,Nanjing University between December 2017 and December 2018.For ground-truth annotation,three trained experts determined the type of plaque that was present in a B-Scan.The experts assigned the labels'no calcified plaque','calcified plaque'for each OCT image.All experts were provided the all images for labeling.The final label was determined based on consensus between the experts,different opinions on the plaque type were resolved by asking the experts for a repetition of their evaluation.Before the implement of algorithm,all OCT images was resized to a resolution of 300×300,which matched the range used with standard architectures in the natural image domain.In the study,we randomly selected 26 pullbacks for training,the remaining data were testing.While,imbalance label distribution within entire pullbacks was great challenge for various CNNs architecture.In order to resolve the problem,we designed the following experiment.First,we fine-tuned twenty different CNNs architecture,including customize CNN architectures and pretrained CNN architectures.Considering the nature of OCT images,customize CNN architectures were designed that the layers were fewer than 25 layers.Then,three with good performance were selected and further deep fine-tuned to train three different models.The difference of CNNs was mainly in the model architecture,such as depth-based residual networks,width-based inception networks.Finally,the three CNN models were used to majority voting,the predicted labels were from the most voting.Areas under the receiver operating characteristic curve(ROC AUC)were used as the evaluation metric for the imbalance label distribution.Results The imbalance label distribution within pullbacks affected both convergence during the training phase and generalization of a CNN model.Different labels of OCT images could be classified with excellent performance by fine tuning parameters of CNN architectures.Overall,we find that our final result performed best with an accuracy of 90%of'calcified plaque'class,which the numbers were less than'no calcified plaque'class in one pullback.Conclusions The obtained results showed that the method is fast and effective to classify calcific plaques with imbalance label distribution in each pullback.The results suggest that the proposed method could be facilitating our understanding of coronary artery calcification in the process of atherosclerosis andhelping guide complex interventional strategies in coronary arteries with superficial calcification. 展开更多
关键词 CALCIFIED PLAQUE INTRAVASCULAR optical coherence tomography deep learning IMBALANCE LABEL distribution convolutional neural networks
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
2
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
3
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
4
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning Multi-scale convolution Open-circuit convolutional neural network
在线阅读 下载PDF
A deep dense captioning framework with joint localization and contextual reasoning
5
作者 KONG Rui XIE Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2801-2813,共13页
Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate loca... Dense captioning aims to simultaneously localize and describe regions-of-interest(RoIs)in images in natural language.Specifically,we identify three key problems:1)dense and highly overlapping RoIs,making accurate localization of each target region challenging;2)some visually ambiguous target regions which are hard to recognize each of them just by appearance;3)an extremely deep image representation which is of central importance for visual recognition.To tackle these three challenges,we propose a novel end-to-end dense captioning framework consisting of a joint localization module,a contextual reasoning module and a deep convolutional neural network(CNN).We also evaluate five deep CNN structures to explore the benefits of each.Extensive experiments on visual genome(VG)dataset demonstrate the effectiveness of our approach,which compares favorably with the state-of-the-art methods. 展开更多
关键词 dense captioning joint localization contextual reasoning deep convolutional neural network
在线阅读 下载PDF
Sound event localization and detection based on deep learning
6
作者 ZHAO Dada DING Kai +2 位作者 QI Xiaogang CHEN Yu FENG Hailin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期294-301,共8页
Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,... Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method. 展开更多
关键词 sound event localization and detection(SELD) deep learning convolutional recursive neural network(CRNN) channel attention mechanism
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
7
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
A survey of fine-grained visual categorization based on deep learning
8
作者 XIE Yuxiang GONG Quanzhi +2 位作者 LUAN Xidao YAN Jie ZHANG Jiahui 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1337-1356,共20页
Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categ... Deep learning has achieved excellent results in various tasks in the field of computer vision,especially in fine-grained visual categorization.It aims to distinguish the subordinate categories of the label-level categories.Due to high intra-class variances and high inter-class similarity,the fine-grained visual categorization is extremely challenging.This paper first briefly introduces and analyzes the related public datasets.After that,some of the latest methods are reviewed.Based on the feature types,the feature processing methods,and the overall structure used in the model,we divide them into three types of methods:methods based on general convolutional neural network(CNN)and strong supervision of parts,methods based on single feature processing,and meth-ods based on multiple feature processing.Most methods of the first type have a relatively simple structure,which is the result of the initial research.The methods of the other two types include models that have special structures and training processes,which are helpful to obtain discriminative features.We conduct a specific analysis on several methods with high accuracy on pub-lic datasets.In addition,we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power.In terms of tech-nology,the extraction of the subtle feature information with the burgeoning vision transformer(ViT)network is also an important research direction. 展开更多
关键词 deep learning fine-grained visual categorization convolutional neural network(CNN) visual attention
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
9
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
10
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
11
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
12
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
13
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
14
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(CNN) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:1
15
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型 被引量:1
16
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
17
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于深度学习的复合超分辨率重建算法在膝关节MRI中的临床应用价值
18
作者 王超 谢晓亮 +4 位作者 朱熹 黄文诺 尚松安 叶靖 王志军 《放射学实践》 北大核心 2025年第1期67-72,共6页
目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采... 目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采用双盲法比较两组主客观图像质量。结果:相较常规组,复合组PD和T1序列的骨髓、软骨、半月板、韧带、肌肉、脂肪、关节液的SNR分别提升89.3%、52.5%、65.3%、73.8%、60.3%、103.9%、58.9%和78.0%、172.9%、78.0%、72.5%、75.4%、63.4%、97.0%。相较常规组,复合组PD和T1序列的软骨-关节液、软骨-骨髓、半月板-关节液、韧带-关节液、骨髓-关节液、脂肪-关节液、肌肉-关节液的CNR分别提升119.5%、83.3%、116.2%、109.2%、109.2%、99.3%、116.8%和61.7%、23.1%、78.7%、32.5%、161.7%、44.9%、39.2%。复合组的峰值信噪比(PSNR)相较常规组显著提高(P<0.05),结构相似度(SSIM)均>0.999。主观图像质量评价中复合组病灶边缘区分度、运动伪影和综合诊断度的主观评分显著高于常规组(P<0.05),两组病灶辨别度的主观评分差异无统计学意义(P>0.05)。结论:合理优化扫描参数并结合基于深度学习的复合超分辨率重建算法可在提升扫描效率的同时显著提高膝关节MRI的图像质量和综合诊断效果。 展开更多
关键词 卷积神经网络 深度学习 膝关节 磁共振成像 超分辨率重建
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
19
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
基于卷积神经网络的立体匹配算法研究
20
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部