期刊文献+
共找到1,511篇文章
< 1 2 76 >
每页显示 20 50 100
基于改进DeeplabV3+算法的地铁轨行区识别
1
作者 刘嘉宁 赵才友 张银喜 《铁道建筑》 北大核心 2025年第2期139-145,共7页
为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量... 为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量级卷积神经网络MobileNetV2,引入注意力机制CBAM(Channel Attention Module)来提高网络对特征的感知能力,并改进ASPP(Atrous Spatial Pyramid Pooling)使其能编码多尺度信息。应用自制数据集验证本文方法的有效性,并与经典DeeplabV3+、U-net、MaskR-CNN算法进行对比分析。结果表明:本文算法精确率、准确率、召回率、平均交并比分别为94.57%、94.43%、93.49%、90.24%,训练时长6.5 h,单张图像预测时长51.78 ms,模型大小为23 MB,均优于其他三种算法。本文算法在提高对轨道区域图像分割性能的同时,增强了模型的训练和检测效率,具有运用于地铁轨道区域识别的可行性和实用性。 展开更多
关键词 地铁 轨道区域识别 深度学习 语义分割 deeplabV3+算法
在线阅读 下载PDF
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建 被引量:1
2
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
在线阅读 下载PDF
基于改进DeeplabV3+的水面多类型漂浮物分割方法研究
3
作者 包学才 刘飞燕 +2 位作者 聂菊根 许小华 柯华盛 《水利水电技术(中英文)》 北大核心 2024年第4期163-175,共13页
【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行... 【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行分类,采用自制数据集进行对比试验。算法选择xception网络作为主干网络以获得初步漂浮物特征,在加强特征提取网络部分引入注意力机制以强调有效特征信息,在后处理阶段加入全连接条件随机场模型,将单个像素点的局部信息与全局语义信息融合。【结果】对比图像分割性能指标,改进后的算法mPA(Mean Pixel Accuracy)提升了5.73%,mIOU(Mean Intersection Over Union)提升了4.37%。【结论】相比于其他算法模型,改进后的DeeplabV3+算法对漂浮物特征的获取能力更强,同时能获得丰富的细节信息以更精准地识别多类型水面漂浮物的边界与较难分类的漂浮物,在对多个水库场景测试后满足实际水域环境中漂浮物检测的需求。 展开更多
关键词 深度学习 语义分割 特征提取 漂浮物识别 注意力机制 全连接条件随机场 算法模型 影响因素
在线阅读 下载PDF
基于场因子分解的xDeepFM推荐模型
4
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
在线阅读 下载PDF
基于DQN算法的直流微电网负载接口变换器自抗扰控制策略 被引量:1
5
作者 周雪松 韩静 +3 位作者 马幼捷 陶珑 问虎龙 赵明 《电力系统保护与控制》 北大核心 2025年第1期95-103,共9页
在直流微电网中,为了保证直流母线与负载之间能量流动的稳定性,解决在能量流动中不确定因素产生的扰动问题。在建立DC-DC变换器数学模型的基础上,设计了一种基于深度强化学习的DC-DC变换器自抗扰控制策略。利用线性扩张观测器对总扰动... 在直流微电网中,为了保证直流母线与负载之间能量流动的稳定性,解决在能量流动中不确定因素产生的扰动问题。在建立DC-DC变换器数学模型的基础上,设计了一种基于深度强化学习的DC-DC变换器自抗扰控制策略。利用线性扩张观测器对总扰动的估计补偿和线性误差反馈控制特性对自抗扰控制器结构进行简化设计,并结合深度强化学习对其控制器参数进行在线优化。根据不同工况下的负载侧电压波形,分析了DC-DC变换器在该控制策略、线性自抗扰控制与比例积分控制下的稳定性、抗扰性和鲁棒性,验证了该控制策略的正确性和有效性。最后,在参数摄动下进行了蒙特卡洛实验,仿真结果表明该控制策略具有较好的鲁棒性。 展开更多
关键词 直流微电网 深度强化学习 DQN算法 DC-DC变换器 线性自抗扰控制
在线阅读 下载PDF
缓存辅助的移动边缘计算任务卸载与资源分配 被引量:1
6
作者 李致远 陈品润 《计算机工程与设计》 北大核心 2025年第5期1248-1255,共8页
针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,... 针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,上层使用软动作评价算法进行计算任务卸载与资源分配决策。仿真实验结果表明,HRLJCORA算法与现有基线算法相比,有效降低了总开销,相较于联合优化计算任务卸载与资源分配(JORA)算法,卸载决策奖励值提高了13.11%,为用户提供了更优质的服务。 展开更多
关键词 移动边缘计算 缓存辅助 卸载决策 资源分配 分层强化学习 深度Q-learning网络算法 软动作评价算法
在线阅读 下载PDF
基于PID搜索优化的CNN-LSTM-Attention铝电解槽电解温度预测方法研究 被引量:4
7
作者 尹刚 朱淼 +2 位作者 全鹏程 颜玥涵 刘期烈 《仪器仪表学报》 北大核心 2025年第1期324-337,共14页
铝电解生产环境恶劣,受电场、磁场、流场、温度场等多物理场耦合影响,导致铝电解生产过程故障频发。铝电解温度是影响铝电解槽寿命和运行状态的重要参数,但由于槽内温度很高且具有强烈腐蚀性,至今尚未找到有效的电解温度在线检测与预测... 铝电解生产环境恶劣,受电场、磁场、流场、温度场等多物理场耦合影响,导致铝电解生产过程故障频发。铝电解温度是影响铝电解槽寿命和运行状态的重要参数,但由于槽内温度很高且具有强烈腐蚀性,至今尚未找到有效的电解温度在线检测与预测方法。为了解决这一技术难题,通过理论分析结合现场实验验证,揭示了铝电解槽电解温度与其工艺参数间的密切相关性,并据此提出一种基于深度学习的铝电解槽电解温度预测模型。考虑到铝电解槽工艺参数的复杂性、非线性、高维度、时序性等特征,采用卷积神经网络(CNN)用于提取数据的高维特征,长短期记忆网络用于建模(LSTM),处理铝电解生产过程中的时序数据,引入了注意力机制(Attention),学习输入参数不同部分之间的关联性,同时根据输入数据的重要程度进行加权处理,并采用PID搜索优化算法(PSA)对CNN-LSTM-Attention模型的参数进行寻优,减少训练时间并提高模型的性能。最后经铝电解实际生产数据进行现场实验验证,结果表明:提出的温度预测模型相关指数(R~2)为0.963 7,均方根误差(RMSE)和平均绝对误差(MAE)分别为5.417 6和3.382 5,与单一模型算法、其他预测算法和不同优化算法对比验证表明,该模型的性能更佳,能够准确预测铝电解槽电解温度,实现了铝电解槽电解温度的在线检测。 展开更多
关键词 铝电解 算法 电解温度 深度学习 过程控制
在线阅读 下载PDF
改进型YOLOv3的PCB缺陷检测研究 被引量:1
8
作者 张健滔 黄允 +1 位作者 汪鹏宇 瞿栋 《机械设计与制造》 北大核心 2025年第7期172-177,共6页
为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的... 为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的漏检率低于15%,无缺陷图片(简称OK图片)的误检率只有5%左右。在深入分析检测的结果后,发现对于小缺陷的识别效果较差,于是增加了一个感受野更小的检测头,构建了具有四个检测头的网络结构。利用改进型的YOLOv3算法进行实验,结果表明:改进后的YOLOv3算法具有更好的检测性能,在阈值为0.5时,OK图片的误检率较改进前降低为0.25%,并且在阈值为0.7时更是达到了0%,NG图片的漏检率较改进前也有所降低。 展开更多
关键词 深度学习 PCB 缺陷检测 YOLOv3算法 目标检测
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
9
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 U-net网络 CANNY边缘检测算法
在线阅读 下载PDF
一种基于机器学习的井间水驱优势通道识别方法 被引量:3
10
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
深度强化学习求解动态柔性作业车间调度问题 被引量:1
11
作者 杨丹 舒先涛 +3 位作者 余震 鲁光涛 纪松霖 王家兵 《现代制造工程》 北大核心 2025年第2期10-16,共7页
随着智慧车间等智能制造技术的不断发展,人工智能算法在解决车间调度问题上的研究备受关注,其中车间运行过程中的动态事件是影响调度效果的一个重要扰动因素,为此提出一种采用深度强化学习方法来解决含有工件随机抵达的动态柔性作业车... 随着智慧车间等智能制造技术的不断发展,人工智能算法在解决车间调度问题上的研究备受关注,其中车间运行过程中的动态事件是影响调度效果的一个重要扰动因素,为此提出一种采用深度强化学习方法来解决含有工件随机抵达的动态柔性作业车间调度问题。首先以最小化总延迟为目标建立动态柔性作业车间的数学模型,然后提取8个车间状态特征,建立6个复合型调度规则,采用ε-greedy动作选择策略并对奖励函数进行设计,最后利用先进的D3QN算法进行求解并在不同规模车间算例上进行了有效性验证。结果表明,提出的D3QN算法能非常有效地解决含有工件随机抵达的动态柔性作业车间调度问题,在所有车间算例中的求优胜率为58.3%,相较于传统的DQN和DDQN算法车间延迟分别降低了11.0%和15.4%,进一步提升车间的生产制造效率。 展开更多
关键词 深度强化学习 D3QN算法 工件随机抵达 柔性作业车间调度 动态调度
在线阅读 下载PDF
基于地基云图数据多维特征融合的光伏功率预测算法 被引量:1
12
作者 吐松江·卡日 吴现 +3 位作者 马小晶 雷柯松 余凯峰 司伟壮 《电力系统保护与控制》 北大核心 2025年第11期84-94,共11页
针对传统光伏功率预测算法无法获取准确云层状态信息和预测精度低等问题,提出一种基于地基云图与双流数据融合的光伏功率预测算法。首先,利用地基云图提供的精确云层状态信息,结合稠密光流法获取相邻帧图像间的时空特征与细节变化特征... 针对传统光伏功率预测算法无法获取准确云层状态信息和预测精度低等问题,提出一种基于地基云图与双流数据融合的光伏功率预测算法。首先,利用地基云图提供的精确云层状态信息,结合稠密光流法获取相邻帧图像间的时空特征与细节变化特征。其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和残差网络在模型学习中抑制信息丢失上的优势,提升预测模型对光伏功率与图像数据间长期映射关系的学习能力。此外,引入注意力机制弥补模型训练过程中关键信息利用不充分的缺陷。实验结果表明,地基云图与光流数据的加入为多云天气提供了更多时空特征。与基准模型相比,其晴天与多云情况下均方根误差(root mean squared error,RMSE)指标和平均绝对误差(mean absolute error,MAE)指标分别降低了15.50%、11.65%、4.05%与5.15%,有助于充分利用云层运动状况来实现准确可靠的光伏电站输出功率预测,提升光伏电站调度工作的及时性与准确性。 展开更多
关键词 深度学习 功率预测 地基云图 注意力机制 稠密光流算法
在线阅读 下载PDF
基于深度强化学习的游戏智能引导算法 被引量:2
13
作者 白天 吕璐瑶 +1 位作者 李储 何加亮 《吉林大学学报(理学版)》 北大核心 2025年第1期91-98,共8页
针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输... 针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输入数据量;其次,通过精细化设计奖励机制,加速模型的收敛过程;最后,从主观定性和客观定量两方面对该算法模型与现有方法进行对比实验,实验结果表明,该算法不仅显著提高了模型的训练效率,还大幅度提高了智能体的性能. 展开更多
关键词 深度强化学习 游戏智能体 奖励函数塑形 近端策略优化算法
在线阅读 下载PDF
YOLO-LDD:轻量级无人机检测算法 被引量:1
14
作者 邵剑飞 蔡世军 刘杰 《吉林大学学报(理学版)》 北大核心 2025年第3期867-877,共11页
针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能... 针对在无人机目标检测中现有检测算法模型过大、速度较慢、复杂度过高等问题,提出一种基于YOLOv5n的改进型轻量级无人机检测算法YOLO-LDD.首先,在YOLOv5n基础上引入多样化分支模块DBB和C3模块融合重构为C3_DBB模块,增强单个卷积的表征能力;其次,在颈部网络中引入重参数化结构卷积RepConv,提升检测速度;最后,通过层自适应幅度剪枝(LAMP)方法压缩模型,减少参数数量.实验结果表明,该算法可在保持良好检测性能的同时,降低计算和存储需求,并提高模型的效率和推理速度,平均精度达96.7%,参数量较YOLOv5n压缩73%,运算量减少60%,检测速度提升至原来的1.6倍. 展开更多
关键词 无人机 目标检测 YOLOv5n算法 轻量级 深度学习
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法 被引量:3
15
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 YOLOv7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
软土深基坑伺服钢支撑轴力动态设置
16
作者 毕湘利 郭慧吉 +2 位作者 狄宏规 刘洪波 吴迪 《同济大学学报(自然科学版)》 北大核心 2025年第8期1262-1268,共7页
为弥补现阶段伺服钢支撑单一阈值作为标定轴力的不足,利用弹性地基梁模型进行基坑围护结构简化,采用考虑支撑极限承载力为上限的可变“集中力”模拟伺服钢支撑,基于ABAQUS软件建立有限元分析模型并与遗传算法进行联合运算,提出了伺服钢... 为弥补现阶段伺服钢支撑单一阈值作为标定轴力的不足,利用弹性地基梁模型进行基坑围护结构简化,采用考虑支撑极限承载力为上限的可变“集中力”模拟伺服钢支撑,基于ABAQUS软件建立有限元分析模型并与遗传算法进行联合运算,提出了伺服钢支撑轴力动态设置的联合求解法。利用伺服钢支撑的伺服轴力调整功能,基于本文的伺服钢支撑轴力动态设置方法,以实际工程需求为导向,通过目标函数设置可给出最优的轴力参考值,为技术人员伺服轴力调控提供参考依据,助力实现基坑“主动调控、微变形控制”的高质量发展目标。 展开更多
关键词 深基坑 伺服钢支撑 遗传算法 轴力设置
在线阅读 下载PDF
基于深度残差网络的多层多道焊缝识别 被引量:1
17
作者 何俊杰 王传睿 王天琪 《天津工业大学学报》 北大核心 2025年第1期91-96,共6页
为保证焊缝跟踪的精度并将激光条纹从强弧光、飞溅中分离出来,提出了一种基于深度残差(SRNU)网络的激光条纹分割算法。该算法是将带有弧光的图像送入SRNU模型,对内嵌于Resunet网络的编码层部分进行改进,添加SE模块和分组残差模块,对多... 为保证焊缝跟踪的精度并将激光条纹从强弧光、飞溅中分离出来,提出了一种基于深度残差(SRNU)网络的激光条纹分割算法。该算法是将带有弧光的图像送入SRNU模型,对内嵌于Resunet网络的编码层部分进行改进,添加SE模块和分组残差模块,对多层级特征信息进行提取和解析。结果表明:所提算法与Resunet算法相比,平均交并比、精确率、召回率与F1分数分别提升了0.79%、1.38%、0.50%和0.91%,说明该方法有较好的鲁棒性且具有较强的抗干扰能力,在复杂工况下也能将激光条纹从强弧光、飞溅中分离出来。 展开更多
关键词 结构光视觉传感器 深度学习 多层多道焊缝 焊缝识别 深度残差 激光条纹分割算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
18
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
感兴趣区域YOLO_BFROI的扶梯乘客安全检测算法
19
作者 侯颖 胡鑫 +3 位作者 赵瑞瑞 张楠 徐艳红 马莉 《计算机工程与应用》 北大核心 2025年第6期84-95,共12页
自动扶梯智能化监控是预防乘客事故发生的重要手段,然而扶梯运行环境较复杂,背景干扰严重,远距离小目标乘客的检测容易造成漏检和误检问题,提出一种基于感兴趣区域改进YOLOv8的轻量化自动扶梯乘客摔倒检测算法。改进算法设计了基于感兴... 自动扶梯智能化监控是预防乘客事故发生的重要手段,然而扶梯运行环境较复杂,背景干扰严重,远距离小目标乘客的检测容易造成漏检和误检问题,提出一种基于感兴趣区域改进YOLOv8的轻量化自动扶梯乘客摔倒检测算法。改进算法设计了基于感兴趣区域的BiFormer_ROI注意力机制模块,构造SPD-Conv和BiFormer_ROI的小目标检测模块组改进YOLOv8骨干网络,屏蔽非扶梯背景区域的复杂环境干扰,有效提高小目标检测率。考虑实际应用需要采用GhostSlimPAFPN轻量化结构优化Neck网络,在保持检测精度的同时有效减少模型参数量。采用具有目标尺寸自适应惩罚因子的PIoU v2损失函数改进Head网络,从而实现更快的收敛和更高的检测精度。在自建扶梯乘客摔倒数据集上,改进算法乘客摔倒平均检测精度达到94.2%,检测帧率为87.7 FPS,检测性能显著提高,能有效减少漏检和误检问题,且具有良好的实时性,可以更好地保障乘客安全乘梯。 展开更多
关键词 深度学习 自动扶梯 摔倒检测 YOLOv8算法 感兴趣区域 轻量化
在线阅读 下载PDF
基于深度学习和特征凝练的变工况航空发动机轴承智能故障诊断
20
作者 刘涵 刘勤明 +1 位作者 叶春明 汪宇杰 《计算机应用研究》 北大核心 2025年第11期3387-3396,共10页
轴承是航空发动机系统的核心元件,其故障诊断非常重要。针对航空发动机轴承在极端复杂且多变工况下,基于原训练集的故障诊断模型无法直接应用于新工况诊断的挑战,进行了一种高精度智能故障诊断方法的研究。首先构建包含一维方差差异卷... 轴承是航空发动机系统的核心元件,其故障诊断非常重要。针对航空发动机轴承在极端复杂且多变工况下,基于原训练集的故障诊断模型无法直接应用于新工况诊断的挑战,进行了一种高精度智能故障诊断方法的研究。首先构建包含一维方差差异卷积神经网络与移动网络注意力机制的独立成分分析模块,对故障特征进行有效凝练;其次运用动态权重控制的星雀优化算法,对门控循环单元模块加以优化,从而实现故障状态的准确识别。算例分析结果表明,所提方法在变工况下的故障诊断准确率高达100%,且具有优越的抗噪声能力,有效解决了航空发动机轴承在变工况下的故障诊断问题。 展开更多
关键词 深度学习 星雀优化算法 故障诊断 移动网络注意力机制 特征凝练
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部