This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investiga...This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR)spectroscopy combined with the two-dimensional correlation spectroscopy(2D-COS)and X-ray photoelectron spectroscopy(XPS).It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1.Zeta potential experiments suggested that,in the presence of mixed collector system,the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA,however,the complex adsorbed on the surface of titanaugite unstably.According to in situ ATR-FTIR combined with 2D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as:the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand,then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding.DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring,while the modes on the titanaugite surface is true opposite.Finally,recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed.展开更多
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s...This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained.展开更多
The mixing mechanism of flotation cells is studied, and the mathematics model for mixing power is established. The model can be used to calculate the power consumption of the whole mechanism, as well as the power comp...The mixing mechanism of flotation cells is studied, and the mathematics model for mixing power is established. The model can be used to calculate the power consumption of the whole mechanism, as well as the power composition of each individual part. The power magnitude and the ratio between the macroscopic convection diffusion and the turbuleut diffusion, which are closely related to the performance of a cell, are also analyzed.展开更多
A series of numerical simulations of turbulent single-phase flows are performed to understand the flow and mixing characteristics in a laboratory scale flotation tank.Four impeller blade shapes covering a wide range o...A series of numerical simulations of turbulent single-phase flows are performed to understand the flow and mixing characteristics in a laboratory scale flotation tank.Four impeller blade shapes covering a wide range of surface areas and lip lengths are considered to highlight and contrast the flow behavior predicted in the impeller stream.The mean flow close to the impeller is fully characterized by considering velocity components along the axial direction at different radial locations.Normalized results suggest the development of a comparatively stronger axial velocity component for a blade design with the smallest lip length,called big-tip impeller here.Normalized turbulent kinetic energy profiles close to the impeller reveal the existence of an asymmetric trailing vortex pair.The highest turbulence kinetic energy dissipation rates are observed close to the impeller blades and stator walls where the radial jet strikes the stator walls periodically.Furthermore,liquid phase mixing in the flotation cell is studied using transient scalar tracing simulations providing mixing time data.Finally,pumping capacity and efficiency of different impeller designs are calculated based on which the impeller blade design with a rectangular blade design is found to perform most efficiently.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51904249 and 51922091)the Sichuan Science and Technology Program(No.SYZ202074)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001).
文摘This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR)spectroscopy combined with the two-dimensional correlation spectroscopy(2D-COS)and X-ray photoelectron spectroscopy(XPS).It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1.Zeta potential experiments suggested that,in the presence of mixed collector system,the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA,however,the complex adsorbed on the surface of titanaugite unstably.According to in situ ATR-FTIR combined with 2D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as:the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand,then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding.DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring,while the modes on the titanaugite surface is true opposite.Finally,recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed.
基金the Key Projects of National Key R&D Program of China(No.2022YFC2904702).
文摘This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained.
文摘The mixing mechanism of flotation cells is studied, and the mathematics model for mixing power is established. The model can be used to calculate the power consumption of the whole mechanism, as well as the power composition of each individual part. The power magnitude and the ratio between the macroscopic convection diffusion and the turbuleut diffusion, which are closely related to the performance of a cell, are also analyzed.
文摘A series of numerical simulations of turbulent single-phase flows are performed to understand the flow and mixing characteristics in a laboratory scale flotation tank.Four impeller blade shapes covering a wide range of surface areas and lip lengths are considered to highlight and contrast the flow behavior predicted in the impeller stream.The mean flow close to the impeller is fully characterized by considering velocity components along the axial direction at different radial locations.Normalized results suggest the development of a comparatively stronger axial velocity component for a blade design with the smallest lip length,called big-tip impeller here.Normalized turbulent kinetic energy profiles close to the impeller reveal the existence of an asymmetric trailing vortex pair.The highest turbulence kinetic energy dissipation rates are observed close to the impeller blades and stator walls where the radial jet strikes the stator walls periodically.Furthermore,liquid phase mixing in the flotation cell is studied using transient scalar tracing simulations providing mixing time data.Finally,pumping capacity and efficiency of different impeller designs are calculated based on which the impeller blade design with a rectangular blade design is found to perform most efficiently.