期刊文献+
共找到1,158篇文章
< 1 2 58 >
每页显示 20 50 100
基于CNN-Attention-LSTM的大坝变形预测模型 被引量:9
1
作者 施彦彤 郑东健 +1 位作者 赵汉 周新新 《水利水电技术(中英文)》 北大核心 2024年第9期121-132,共12页
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记... 【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。【结果】结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0.989 mm、0.337 mm、0.469 mm、0.252 mm和13.918%。【结论】结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。 展开更多
关键词 变形预测 卷积神经网络 长短时记忆网络 注意力机制 影响因素
在线阅读 下载PDF
基于CNN-Attention-BP的降水发生预测研究 被引量:8
2
作者 吴香华 华亚婕 +2 位作者 官元红 王巍巍 刘端阳 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期148-155,共8页
在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络... 在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络对6—8月20—次日20时降水量、平均气压、平均风速、平均气温和平均相对湿度进行特征学习,利用Attention机制来确定气象影响因素对降水预测的权重;然后,使用BP神经网络进行降水发生预测,选用准确率、交叉熵损失函数和F1-score来综合评价CNN-Attention-BP组合模型的性能.最后,将单一的支持向量机、多层感知机和卷积神经网络模型与组合模型进行比较分析.结果表明,CNN-Attention-BP组合模型具有自主学习和关注更重要信息的特征,能够有效提高吉林省夏季降水发生模型的预测能力,在样本越均衡、降水频率越接近于0.5的站点,预测精度越高,准确率最高可达88.4%.CNN-Attention-BP组合模型的准确率相较于其他单一模型最高可以提高近17个百分点. 展开更多
关键词 降水预测 卷积神经网络 Attention机制 BP神经网络 交叉熵损失函数
在线阅读 下载PDF
基于LSTM-CNN-Attention模型的电力设施非周期巡视决策方法 被引量:3
3
作者 陈艳霞 李鑫明 +3 位作者 王志勇 于希娟 闻宇 夏时洪 《计算机应用》 CSCD 北大核心 2023年第S02期291-297,共7页
随着电力系统规模的日益增大,电网面临不确定性故障的危险,会影响人们的日常生活,甚至可导致重大安全事故。因此,提前预测电力设施的运行状态并作出巡视修检决策非常重要。但常用的决策方法(如支持向量机(SVM)模型等)在这些实际应用场... 随着电力系统规模的日益增大,电网面临不确定性故障的危险,会影响人们的日常生活,甚至可导致重大安全事故。因此,提前预测电力设施的运行状态并作出巡视修检决策非常重要。但常用的决策方法(如支持向量机(SVM)模型等)在这些实际应用场景中存在准确度不高、召回率低的问题。针对这一问题,提出一种结合长短期记忆(LSTM)、卷积神经网络(CNN)和注意力(Attention)机制的电力设施非周期巡视决策方法LSTM-CNN-Attention,将数据经过极限梯度提升(XGBoost)特征选择和归一化处理后输入该决策模型,利用注意力机制对经过LSTM和CNN层提取的包含时间和空间的信息作加权处理,区分信息的重要程度,以在输出预测结果时能够更关注那些对结果影响最大的信息,确保在预测过程中更重要的信息能够得到更大的关注和贡献,以提高预测结果的准确性和可靠性。通过在电力设施运行数据集上进行对比实验,验证了LSTM-CNN-Attention的准确率、精确率、召回率和F1-score性能评估指标优于CNN-LSTM、XGBoost、CNN、随机森林、SVM和逻辑回归模型的学习算法。 展开更多
关键词 极限梯度提升 长短期记忆 卷积神经网络 注意力机制 非周期巡视 电力系统
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
4
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
5
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
6
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
一种小样本滚动轴承故障诊断算法 被引量:1
7
作者 宋存利 王子卓 时维国 《中国惯性技术学报》 北大核心 2025年第1期96-106,共11页
针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可... 针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可视化其特征。然后,通过数据增强扩充样本数据,提升模型在小样本情况下的泛化性。为提高特征提取和模型泛化能力,使用MixConv将ConvNeXt V2模型的7×7卷积层重构为不同大小的并行卷积核,增强多尺度特征提取效果;引入卷积注意力机制模块(CBAM)提升关键特征识别能力。该模型在凯斯西储大学、东南大学和渥太华大学的故障数据集上进行实验验证。实验结果表明,所提模型对不同故障的识别率均为100%,与目前常用的7个模型相比,在相同条件下故障识别准确率最高,具有较强的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 注意力机制 连续小波变换 卷积神经网络
在线阅读 下载PDF
改进抗噪1D-CNN的旋转车轮动平衡状态监测 被引量:1
8
作者 周海超 关浩东 +2 位作者 王国林 张宇 赵春来 《振动.测试与诊断》 北大核心 2025年第2期309-315,412,413,共9页
针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实... 针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实车车轮上添加3种不同质量平衡块的方式获得3种不同速度下对应的旋转车轮动不平衡状态下的振动信息;其次,以高斯白噪声为噪声输入,对所测旋转车轮不同动平衡状态的振动信息进行处理,获得试验样本数据,并用其进行模型训练;然后,综合运用卷积运算机制和特征变换进行t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,简称t-SNE)可视化显示,实现对不同动平衡状态的分类输出。结果表明,在不同信噪比的工况下,所提出的改进NRCNN模型旋转车轮的动平衡状态监测方法相比于传统一维卷积神经网络(1D convolutional neural network,简称1D-CNN)模型,展现出更高的诊断准确性,最高可达到99.95%。 展开更多
关键词 卷积神经网络 注意力机制 车轮动平衡 状态监测 高斯白噪声
在线阅读 下载PDF
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
9
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
基于信号序列优化的蜂群状态精准识别机器听觉模型 被引量:1
10
作者 叶大鹏 陈林杰 +4 位作者 张林通 张雯清 魏增辉 黄少康 瞿芳芳 《福建农林大学学报(自然科学版)》 北大核心 2025年第2期268-278,共11页
【目的】通过基于信号序列优化机器听觉模型的研究,为蜂群健康与活动状态的监测提供依据。【方法】在蜂箱内设置音频传感器,以非侵入性和无干扰性的方式持续记录6类蜂群音频,针对传统的音频分类方法中未考虑时序信息和分类准确度不高等... 【目的】通过基于信号序列优化机器听觉模型的研究,为蜂群健康与活动状态的监测提供依据。【方法】在蜂箱内设置音频传感器,以非侵入性和无干扰性的方式持续记录6类蜂群音频,针对传统的音频分类方法中未考虑时序信息和分类准确度不高等问题,提出一种基于双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络优化的多分类模型。基于梅尔频率倒谱系数提取音频特征,并构建以BiLSTM为基准的蜂群状态分类模型;引入卷积神经网络(convolutional neural network, CNN)和自注意力机制(self-attention mechanism, SA)对BiLSTM的输入和输出进行优化;构建优化的CNN-BiLSTM-SA模型用于6类蜂群状态的精准识别。【结果】与CNN和BiLSTM模型相比,CNN-BiLSTM-SA模型的分类准确率最高,训练集和验证集准确率均大于0.990 0,测试集准确率为0.988 6,交叉验证平均准确率为0.981 5。【结论】CNN-BiLSTM-SA模型为蜂箱内蜂群状态精准识别提供了有效技术支持,有助于未来智能养蜂和音频传感监控的发展。 展开更多
关键词 蜂群状态 机器听觉 双向长短期记忆 卷积神经网络 自注意力机制
在线阅读 下载PDF
基于深度学习的矿井瓦斯浓度预测算法研究与实现 被引量:1
11
作者 王宝会 高瞻 +1 位作者 徐林 谭英洁 《计算机科学》 北大核心 2025年第S1期614-620,共7页
目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预... 目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预测效果相比传统预测算法有了进一步提升。而当样本序列长度加长时,由于其模型固有缺陷,预测能力会降低。文中针对此问题提出了一种新型的瓦斯浓度预测模型。卷积神经网络结合循环神经网络的方式,并且加入注意力机制增加数据间的表达能力。通过使用山西汾西矿业集团中兴煤业1209工作面的实际数据进行测试,传统的循环神经网络模型预测的平均相对误差为0.042 1,所提模型预测的平均相对误差为0.029 3。实验表明提出的算法相比瓦斯浓度传统预测算法获得了更好的预测性能。 展开更多
关键词 瓦斯浓度预测 深度学习 卷积神经网络 循环神经网络 Attention机制 LSTM
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:1
12
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:1
13
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
14
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法 被引量:1
15
作者 雷春丽 焦孟萱 +2 位作者 薛林林 张护强 史佳硕 《计算机集成制造系统》 北大核心 2025年第1期278-289,共12页
针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有... 针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有时间相关性的二维特征图。其次,提出条纹自校正注意力机制(SSCAM),它不仅可以加强模型在长距离方向上的特征提取能力,还能建立通道间依赖关系,可以对全局有效信息进行捕捉。然后,将SSCAM引入到多尺度神经网络(MSCNN)中,构建出SSCAM-MSCNN模型。最后,将MTF二维特征图输入到所提模型中进行训练,采用优化后的网络模型进行测试并输出分类结果。通过美国凯斯西储大学以及本实验室MFS滚动轴承数据集对所提方法进行验证,同时对后者进行加噪处理,与其他故障诊断模型进行对比。试验结果表明,所提方法在小样本、变工况条件下具有更高的识别精度、更强的泛化性能与抗噪性能。 展开更多
关键词 滚动轴承 马尔科夫转移场 卷积神经网络 条纹自校正注意力机制 小样本 故障诊断
在线阅读 下载PDF
基于改进DeepLabv3+的安全帽佩戴分割算法
16
作者 邵晓艳 董文永 +2 位作者 赵雪专 李玲玲 薄树奎 《西南大学学报(自然科学版)》 北大核心 2025年第7期185-195,共11页
针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征... 针对物流园区空间跨度大、作业设备繁多导致安全帽佩戴检测分割难度增加的问题,提出一种基于改进DeepLabv3+的安全帽佩戴分割算法。该算法采用ResNet-101膨胀残差网络进行特征提取;在编码阶段引入卷积注意力机制融合模块,有效增强特征区域表征能力;在特征提取阶段引入图像特征网格化模块,将低分辨率图像进行平均切分,有助于获得局部图像的小目标特征。将该算法在SHWD(Safety Helmet Wearing Detect)数据集中训练测试,结果表明:算法的像素准确率达到89.23%,相比DeepLabv3+提升了2.21个百分点,有效提高了复杂场景下物流园区安全帽佩戴分割精度。 展开更多
关键词 神经网络 注意力机制 膨胀卷积 语义分割
在线阅读 下载PDF
聚合全局交互与局部交互的知识图谱补全
17
作者 冯勇 栾超杰 +2 位作者 王嵘冰 徐红艳 张永刚 《计算机科学与探索》 北大核心 2025年第7期1909-1917,共9页
知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交... 知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交互而忽略了实体关系间全局交互的影响。为此,提出一种聚合全局交互与局部交互的知识图谱补全方法AGILI。该方法首先引入自注意力机制获取头实体和关系间的信息关联程度,生成融入全局交互信息的嵌入表示,再采用卷积神经网络从新嵌入表示中提取局部交互信息,设计基于关系权重的可学习交互聚合器,在将全局交互与局部交互进行特征融合时,可以根据关系类别自适应地调整两种交互的重要程度,提高方法在多关系知识图谱上的表达能力。在公开数据集FB15k-237、WN18RR和Kinship上通过链接预测任务进行实验验证,实验结果表明,与最新的基于卷积神经网络的模型ConvD相比,所提出的方法在FB15k-237数据集上Hits@1、Hits@3指标分别提高了6.9%、5.3%,证明了所提出方法的优越性。 展开更多
关键词 知识图谱 知识图谱补全 链接预测 自注意力机制 卷积神经网络
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
18
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于CNN-Transformer混合模型的辣椒病害识别
19
作者 尚俊平 张冬阳 +3 位作者 杜玉科 席磊 程金鹏 刘合兵 《中国农机化学报》 北大核心 2025年第10期168-175,F0002,共9页
为提高辣椒病害识别精度,克服传统模型对病害特征捕捉不全导致的分类错误与漏检问题,提出一种CNN-Transformer混合架构辣椒病害识别模型CTF-Net。在网络低层设计增强卷积模块FEC,将SE注意力机制引入MobileNetV2卷积模块MV2,自适应调整... 为提高辣椒病害识别精度,克服传统模型对病害特征捕捉不全导致的分类错误与漏检问题,提出一种CNN-Transformer混合架构辣椒病害识别模型CTF-Net。在网络低层设计增强卷积模块FEC,将SE注意力机制引入MobileNetV2卷积模块MV2,自适应调整通道权重,增强对关键特征的敏感度。并结合平均池化和最大池化特征提取分支,增强模型在多尺度和多视角下的特征提取能力;在网络高层设计具备自适应特征选择能力的动态CNN-Transformer融合模块DCT,根据输入数据的特征分布动态调整特征提取策略,平衡局部细节与全局信息的捕捉,优化特征表示;基于迁移学习进行训练,进一步提升模型的特征学习能力和泛化能力。试验结果表明,计算量FLOPs仅为640.6 M的CTF-Net模型迁移学习后在辣椒病害数据集上的识别准确率达到97.5%,与经典模型MobileViT、MobileNetV3-small、ResNet34、AlexNet、VGG16和Swin Transformer相比,分类准确率分别提高7.6%、8.2%、6.6%、19.7%、3.7%和5.3%,在精确率、召回率、特异度、F1分数等指标上均有优势。 展开更多
关键词 辣椒 病害识别 卷积神经网络 自注意力机制 迁移学习
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
20
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部